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Abstract

Online code snippets are prevalent and are useful for developers. These snippets are
commonly shared on websites such as Stack Overflow to illustrate programming concepts.
However, these code snippets are frequently incomplete. In Java code snippets, type refer-
ences are typically expressed using simple names, which can be ambiguous. Identifying the
exact types used requires fully qualified names typically provided in import statements.
Despite their importance, such import statements are only available in 6.88% of Java code
snippets on Stack Overflow. To address this challenge, this thesis explores constraint-based
type inference to recover missing type information. It also proposes a dataset for evaluat-
ing the performance of type inference techniques on Java code snippets, particularly large
language models (LLMs). In addition, the scalability of the initial inference technique is
improved to enhance applicability in real-world scenarios.

The first study introduces SnR, a constraint-based type inference technique to automat-
ically infer the exact type used in code snippets and the libraries containing the inferred
types, to compile and therefore reuse the code snippets. Initially, SnR builds a knowledge
base of APIs, i.e., various facts about the available APIs, from a corpus of Java libraries.
Given a code snippet with missing import statements, SnR automatically extracts typing
constraints from the snippet, solves the constraints against the knowledge base, and returns
a set of APIs that satisfies the constraints to be imported into the snippet. When evaluated
on the StatType-SO benchmark suite, which includes 267 Stack Overflow code snippets,
SnR significantly outperforms the state-of-the-art tool Coster. SnR correctly infers 91.0%
of the import statements, which makes 73.8% of the snippets compilable, compared to
Coster’s 36.0% and 9.0%, respectively.

The second study evaluates type inference techniques, particularly of LLMs. Although
LLMs demonstrate strong performance on the StatType-SO benchmark, the dataset has
been publicly available on GitHub since 2017. If LLMs were trained on StatType-SO, then
their performance may not reflect how the model would perform on novel, real-world code,
but rather result from recalling examples seen during training. To address this, this the-
sis introduces ThaliaType, a new, previously unreleased dataset containing 300 Java code
snippets. Results reveal that LLMs exhibit a significant drop in performance when general-
izing to unseen code snippets, with up to 59% decrease in precision and up to 72% decrease
in recall. To further investigate the limitations of LLMs in understanding the execution
semantics of the code, semantic-preserving code transformations were developed. Analysis
showed that LLMs performed significantly worse on code snippets that are syntactically
different but semantically equivalent. Experiments suggest that the strong performance of



LLMs in prior evaluations was likely influenced by data leakage in the benchmarks, rather
than a genuine understanding of the semantics of code snippets.

The third study enhances the scalability of constraint-based type inference by introduc-
ing Scitix. Constraint-solving becomes computationally expensive using a large knowledge
base in the presence of unknown types (e.g. user-defined types) in code snippets. To
improve scalability, Scitix represents certain unknown types as Any, ignoring such types
during constraint solving. Then an iterative constraint-solving approach saves on compu-
tation and skips constraints involving unknown types. Extensive evaluations show that
the insights improve both performance and scalability compared to SnR. Specifically, Sci-
tix achieves Fl-scores of 96.6% and 88.7% on StatType-SO and ThaliaType, respectively,
using a large knowledge base of over 3,000 jars. In contrast, SnR consistently times out,
yielding Fl-scores close to 0%. Even with the smallest knowledge base, where SnR does
not time out, Scitix reduces the number of errors by 79% and 37% compared to SnR. Fur-
thermore, even with the largest knowledge base, Scitix reduces error rates by 20% and 78%
compared to state-of-the-art LLMs.

This thesis demonstrates the use of constraint-based type inference for Java code snip-
pets. The proposed approach is evaluated through a comprehensive analysis that contextu-
alizes its performance in the current landscape dominated by LLMs. The ensuing system,
Scitix, is both precise and scalable, enhancing the reusability of Java code snippets.
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Chapter 1

Introduction

Code snippets are widely reused by developers, yet they often lack crucial dependency
information, making their reuse difficult. These snippets, which are incomplete fragments
of code frequently found on platforms such as Stack Overflow, typically include only the
minimal function or variable declarations necessary to convey a programming concept.
Consequently, they often exclude the surrounding context. For example, Java code snip-
pets commonly omit class declarations, import statements, and other essential dependency
information required for successful compilation and execution. Developers who wish to
reuse these snippets must therefore manually identify the relevant libraries and resolve the
referenced types in order to integrate and execute the code successfully.

Currently, there are no precise, automated, and explainable techniques for recovering
missing dependency information and import statements from such incomplete code snip-
pets. This challenge is particularly pronounced in Java, where ambiguous simple names
are commonly used to reference types from external libraries. Resolving this ambiguity re-
quires adding fully qualified names (FQNs) through import statements, which are typically
absent in snippets due to their incomplete nature. As a result, developers are often forced
to search across the extensive Java ecosystem, which contains a vast number of available
libraries, to identify the correct dependencies for successful snippet reuse.

Recent research has explored the use of type inference to automatically recover missing
types and generate the corresponding import statements |1, 2, 3, 4, 5, 6, 7, 8]. By inferring
types and resolving their FQNs, these methods can transform incomplete snippets into
compilable code. However, earlier machine learning-based techniques have struggled with
low performance |2, 3], often requiring developers to manually correct erroneous sugges-
tions, undermining the goal of automation.



Recent advances in large language models (LLMs) have significantly improved the abil-
ity to infer missing information from incomplete code snippets [, 7, 8|. LLMs, trained on
massive corpora that include programming code and related natural language, can leverage
their broad knowledge to predict likely types and generate appropriate import statements.
These capabilities have raised hopes that LLMs may overcome the limitations of earlier
machine learning approaches and provide more reliable automation for type inference on
Java code snippets.

However, evaluations of LLM-based type inference for Java code snippets have relied
on code snippets from Stack Overflow, using a benchmark dataset that has been publicly
available on GitHub since 2017 |5, 7, 8]. This raises concerns about data leakage, as these
models may have been trained on data overlapping with the evaluation set, potentially
inflating their performance. Due to the proprietary nature of LLM training data, it is
often impossible to conclusively assess the extent of such data leakage, making fair and
accurate evaluation challenging.

Beyond evaluation concerns, Java’s thriving ecosystem requires type inference tech-
niques to have knowledge of a large number of libraries and types that may be used in
code snippets. Unlike traditional software projects that typically depend on a limited set of
known libraries, code snippets may draw from any part of a vast and continually expanding
collection of Java libraries. The number of potential types increases with the size of the
ecosystem. Consequently, type inference techniques must be both precise and scalable to
handle the large and diverse set of libraries and types involved in snippet reuse.

1.1 Overview

This thesis focuses on type inference for incomplete Java code snippets.

Thesis Statement

This thesis demonstrates that constraint-based type inference provides a precise and
scalable solution for recovering missing import statements from incomplete code

snippets, outperforming prior machine learning-based approaches and state-of-the-
art LLMs.

This thesis consists of three studies that build upon one another. The first introduces
constraint-based type inference using SnR, which outperforms prior machine learning-based
techniques. The second evaluates state-of-the-art LLM-based techniques using SnR as one



of the baselines to assess true LLM performance. The third proposes Scitix, which extends
constraint-based inference to preserve precision while improving scalability.

Constraint-Based Type Inference for Incomplete Java Code Snippets. The first
study introduces SnR to precisely infer the types used in incomplete Java code snippets.
SnR tackles the challenges with a lack of dependency information and a lack of import
statements by leveraging constraints. Given a code snippet with missing import statements,
SnR automatically extracts typing constraints from the snippets. These constraints are then
solved using a constraint solver with a pre-built knowledge base of types, collected from
various Java libraries. The solver identifies the set of types that satisfy the constraints
which can be used to suggest the necessary import statements for the code snippet.

SnR was evaluated on a benchmark dataset of 267 Stack Overflow code snippets, named
StatType-SO, and achieved substantial improvements over the state-of-the-art tool Coster.
Specifically, SnR correctly inferred 91.0% of the import statements, compared to Coster’s
36.0%.

This study was published at the 44th International Conference on Software Engineer-
ing (ICSE’22) [1].

FEvaluating the True Type Inference Performance of LLMs. The second study
investigates the potential impact of data leakage on LLMs when applied to type inference.
Since SnR’s publication, advances in LLMs allow developers to directly ask LLMs to in-
fer import statements on code snippets with promising results [5, 7, 8]. However, given
that state-of-the-art LLMs are trained on massive datasets from the internet, including
platforms such as Stack Overflow and GitHub, concerns arise about data leakage. This
is particularly relevant because the StatType-SO dataset has been publicly available on
GitHub since 2017.

To assess if LLMs’ true type inference performance was misrepresented due to data
leakage, a two-fold investigation is conducted. First, Thalia, a testing framework for type
systems, was repurposed to randomly generate 300 novel code snippets, ensuring they
were previously unseen by the LLMs. These code snippets are referred to as ThaliaType.
When evaluated on ThaliaType, LLMs exhibited a performance decrease of up to 67.2%
compared to their performance on StatType-SO. The performance decrease on LLMs with
unknown training data is consistent with the baseline LLM with known data leakage and
far more than the SnR baseline. Second, semantic preserving transformations were applied
to both StatType-SO and ThaliaType code snippets to test LLMs’ generalization capabil-
ities despite syntactic differences. Isolated transformations showed that LLMs are able to
generalize to code snippets with syntactic differences. However, when transformations are



combined, all tested LLMs showed consistent, significant performance decreases in only
StatType-SO code snippets.

These findings suggest that future evaluations of LLM-based type inference techniques
should consider data leakage and evaluate using generated and transformed code snippets
to ensure the tool is able to generalize to unseen code snippets.

This study was submitted to ACM Transactions on Software Engineering and Method-
ology (TOSEM) and is undergoing major revision.

Scalable Constraint-Based Type Inference with Unknown Types. The third
study presents Scitix to improve the scalability of constraint-based type inference when
unknown types are present. While SnR is efficient when the knowledge base contains all
the types that are used in the code snippet, in practice, there are often unknown types (e.g.,
user-defined types) present in code snippets, which makes SnR inefficient. To address this
challenge, Scitix adds a special Any type to represent the known unknown types present
in the code snippet and employs an iterative approach to add the constraints unrelated to
unknown types, thereby maintaining scalability.

Scitix was evaluated using seven knowledge bases comprising up to 3,049 Java li-
braries. It consistently outperformed SnR across all knowledge base sizes. Specifically,
Scitix achieved Fl-scores of 96.6% on Stack Overflow snippets and 88.7% on ThaliaType
with the largest knowledge base. In contrast, SnR consistently times out, resulting in near-
zero F'1 scores. Even with the smallest knowledge base, Scitix reduces the number of errors
by 79% and 37% compared to SnR. Additionally, Scitix reduces error rates by 20% and
78% compared to state-of-the-art LLMs, even when using the largest knowledge base.

These results demonstrate Scitix’s potential as a practical, scalable solution for constraint-
based type inference in real-world code snippets.

This study was submitted to ACM Transactions on Software Engineering and Method-
ology (TOSEM) and is awaiting decision.

1.2 Contribution

This thesis makes three main contributions to support code snippet reuse by automatically
inferring missing import statements.

Constraint-Based Type Inference. @ We propose SnR, a novel constraint-based ap-
proach that automatically and precisely infers types and creates import statements for



incomplete Java code snippets. Our comprehensive evaluation using StatType-SO demon-
strates that SnR greatly outperforms the state-of-the-art tool in type inference.

FEvaluation Against LLMs. Through a novel application of Thalia, we introduce
ThaliaType, a novel benchmark of unseen code snippets designed to mitigate potential
data leakage when evaluating LLM-based type inference. Evaluation using ThaliaType and
transformed code snippets reveal that LLMs may be affected by data leakage, exhibiting
reduced generalizability on StatType-SO.

Scalable Constraint-Based Type Inference With Unknown Types.  We further
proposed Scitix, a scalable approach for type inference in the presence of unknown types
through the introduction of the Any type and an iterative approach to add constraints.
Scitix outperforms both SnR and LLMs in StatType-SO and ThaliaType code snippets.

1.3 Organization

The remainder of the thesis details the three studies described above. §2 introduces the
necessary background, including the structure of Java programs, an overview of Datalog as
used for constraint solving, and the use of LLMs in software engineering. §3 presents SnR,
a constraint-based type inference approach. §4 evaluates LLMs to assess their true type
inference performance. §5 improves SnR by introducing Scitix, a scalable solution for type
inference in the presence of unknown types. Finally, §6 concludes the thesis and outlines
directions for future work.



Chapter 2

Background

Type inference on incomplete Java code snippets primarily involves inferring the types of
the simple names used in the snippet. While this thesis focuses on Java, the concepts
presented are applicable to a broad spectrum of programming languages. In this chapter,
§2.1 briefly introduces the essential Java concepts necessary to understand our approach.
Subsequently, §2.2 introduces the notation and system that are used to represent and solve
the constraints. §2.3 then gives some background information on LLMs and their use in
software engineering.

2.1 Java Program

In a typical Java program [9], there is a set of compilation units, each of which is a Java
source file. Each Java source file contains a set of import statements, defines one top-
level class, and may include any number of inner classes. The import statements are used
to specify the FQNs for the simple names used in class or classes within the source file.
Generally, a Java class has the following components which are used by SnR for type
inference.

Name FEach type (e.g., class, interface, annotations) has a fully qualified name, which is
the combination of its package name (may be empty) and simple name. Syntactically, an
FQN is a sequence of simple names joined by dots.

Super Class Each class has a single super class except the class java.lang.0bject
(Object for short). The default super class of a class is Object if the extends decla-
ration is absent.



Ezpr == Name | Literal | this | Expr Op Ezpr
| (Type) Expr | Expr [Expr]
| Ezpr . SimpleName
| Ezpr instanceof ReferenceType
| Ezpr . SimpleName ({Expr})
| new ClassType ({Expr})
| new Type [ Expr]

Name == FQN | SimpleName
FQN == Name . SimpleName
Literal == mnull | NumberLiteral | StringLiteral
Op == +[-|*x[/|h[>]=1|>]1=
Type = PrimitiveType | ReferenceType
ReferenceType 1= ClassType | ArrayType
| Parameterized Type
PrimitiveType == 1int | float | boolean
ClassType = Name
ArrayType = Typel]
ParameterizedType == ClassType <{ Class Type }>

Figure 2.1: Part of a simplified grammar of the expressions in Java. {*} denotes that the
enclosed term occurs zero or more times.

Interfaces Each class can have a set of interfaces as supertypes.

Annotations FEach class can have a set of annotations.

Fields Each class can have a set of fields. Each field has a type and a name, and can be
optionally initialized with an expression.

Methods Each class has a set of methods. Each method has a name, an optional sequence
of parameters, and a return type. Methods contain statements and expressions in them.

Figure 2.1 shows a simplified version of the grammar of expressions in Java. We will use
this grammar and the language constructs listed above to illustrate the type inference
techniques in this thesis.



2.2 Datalog

Our techniques (SnR and Scitix) leverage Datalog, a declarative logic programming lan-
guage that emerged from database systems in the 1980s [10]. In recent years, Datalog
has found use in a whole range of applications [I1, 12] in particular program analy-
sis [13, 14, 15, 16, 17]. Numerous implementations of Datalog have emerged over the
years |18, 19, 20, 21, 22]. This thesis utilizes the Soufflé Datalog engine [20], chosen for its
high performance on static analysis workloads [23].

A Datalog grammar is shown in Figure 2.2a. A Datalog program consists of a list of
facts and rules, representing sets of relations. Facts are known relations given to a Datalog
program and rules are used to derive relations using facts and other rules as specified by
the program. Relations can be queried to return all satisfying constants.

Figures 2.2b—2.2e use a dependency graph as an example to illustrate the various facets
of a Datalog program. The dependency graph in Figure 2.2b has three nodes a, b, and
¢ where a depends on b and b depends on c. The information of this dependency graph
can be represented as the Datalog facts shown in Figure 2.2d. To recursively query the
reachable node pairs in this dependency graph, we write a demonstration Datalog program
consisting of two rules as shown in Figure 2.2c. When we query for the reachable relation,
all the reachable node pairs are returned by a Datalog solver as seen in Figure 2.2¢, 1i.e.,
(a,b), (a,c), and (b,c).

As will be shown in §3 and 85, constraint-based type inference involves extracting
constraints from code snippets and refining facts from a pre-built knowledge base. These
constraints and facts are then provided to a Datalog system to get sets of FQNs that satisfy
all the given constraints.

2.3 Large Language Models

Large language models are machine-learning models trained on vast amounts of text to
perform a wide range of generative tasks |24, 25, 26, 27]. The most capable state-of-the-art
LLMs are based on the transformer architecture [28], which enables efficient training on
massive datasets, typically using text or code scraped from the internet [24, 25, 26].

In software engineering, LLMs have been applied to tasks such as automated code
repair |29, 30, 31, 32, 33, 34, 35, 30|, code generation [37, 38, 39, 40|, code refactoring [11,
|, and code completion |13, 14, 15]. Naturally, prior type inference techniques for Java



Program == Fact Program | Rule Program | €

Fact == relation ( {constant} ).

Rule == Atom :- NAtom {NAtom} .
NAtom = Atom | ! Atom

Atom == relation ( {Term} )

Term = constant | variable

(a) Simplified Datalog grammar. The terms relation and wvariable are names for defining rela-
tionships declaring and referencing variables. constant is either a numerical or string literal. {*}
denotes that the enclosed term occurs zero or many times.

O—0—O

(b) Dependency graph.

1 reachable(s,t) :- node(s) node(t)

2 edge(s, t).

3 reachable(s,t) :- node(s) node(m) node(t)
4 edge (s, m)

reachable(m,t) .

w

(c) Recursive Datalog rules defining reachability.

1 node("a"

2 node ("b") .

3 node("c"). 1 reachable("a","b").

4 edge("a","b"). 2 reachable("a","c").

5 edge("b","c"). 3 reachable("b","c").

(d) Datalog facts representing the depen- (e) Successful reachable query given the
dency graph. facts in Figure 2.2d.

Figure 2.2: Datalog grammar and a Datalog example program.



code snippets have not only used LLMs as baselines for comparison |5, &|, but have also
incorporated LLMs in an iterative workflow for type inference |7].

However, a serious concern when evaluating the performance of LLMs is data leak-
age |16], which occurs when a model is evaluated on data it has seen during training,
leading to inflated performance that may not generalize to unseen data. Since LLMs are
often trained on data scraped from public sources, they may inadvertently ingest datasets
used for evaluation. For example, benchmarks such as Defect4J [17] (for automated code
repair), MBPP [18], and HumanEval [19] (for code generation) have come under increasing
scrutiny for potential leakage [50, 51, 52].

Similarly, type inference techniques for Java code snippets are often evaluated using
StatType-SO, a dataset collected from the Stack Overflow website. LLMs trained on
Stack Overflow data may gain unintended context, such as replies containing expected
import statements, which can artificially inflate performance. Compounding this issue, we
observed that StatType-SO, including the manually repaired import statements, is publicly
available on GitHub (§4.4.2), further motivating our investigation into LLM type inference
performance §4.
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Chapter 3

SnR: Constraint-Based Type Inference
for Incomplete Code Snippets

This chapter introduces SnR, a technique that takes an incomplete code snippet and con-
structs a compilation unit through constraint-based type inference. This chapter demon-
strates that by leveraging both syntactic and semantic relationships within the snippet,
SnR enables precise inference of missing types, which can then be used to repair the code
snippet.

3.1 Introduction

Although many prior approaches aim to assist developers in repairing incomplete code
snippets, they all fall short of addressing all aspects of the problem required for effective
reuse. We identify three core technical challenges that must be addressed.

Challenge 1: Lack of Import Statements. In Java, a class type has a simple name (e.g.,
Date) and a package name (e.g., java.util); its FQN is the combination of its package
name and simple name (e.g., java.util.Date), which uniquely identifies the class type.
To make Java code concise, the simple name of a class type can be used in Java code
directly, and the class type’s FQN is declared by an import statement. With the help of
import statements a Java compiler can identify the exact class type from a simple name
during compilation. Previous work [53] showed that only 6.88% of Java code snippets on
Stack Overflow included import statements that specified the FQNs of the types used in
the code snippets. One example is Figure 3.1; the Java compiler is not able to infer the

11



DateFormat formatter = new SimpleDateFormat("mm/dd/yyyy"):;
Date someDate = new Date();
Date today = Calendar.getInstance().getTime();
try {
someDate = formatter.parse("06/22/2010");
} catch(ParseException pe) {
System.out.println("Parser Exception");
¥
int days = Days.daysBetween(new DateTime (someDate), new DateTime (today)).getDays();
System.out.println(" Days Between " + someDate + " : " + today + " - " + days);

O © 0 N U W N =

[un

Figure 3.1: Formatted code snippet in Stack Overflow post #3329469.

FQNs from simple names such as Date, Days, and DateFormat, because the code snippet
does not have any import statements.

Challenge 2: Lack of Library Dependencies. A code snippet usually does not carry infor-
mation about the libraries. These libraries are needed for the Java compiler to compile
the code snippet as they contain the type definitions used in the snippet. The example in
Figure 3.1 required the Joda-Time library. Note that even correct FQNs do not guarantee
that we can find the correct library to depend on, because different libraries of different
purposes may contain types with the same FQN. For example, the Android runtime library
and the Java runtime library both define a class for java.text.DateFormat.

Challenge 3: Combinatory Candidates. To compile a code snippet, we need to have the
correct FQN for each simple name, and the correct library for each FQN. However, a
simple name may correspond to multiple different FQNs, and each FQN may correspond
to multiple different libraries. The search space is all the combinations of candidates for
each simple name, which defines a computationally expensive problem. For example, in
Figure 3.1, the simple name Date has five matching classes in the Java Development Kit
(JDK) alone; in total, the search space for this code snippet is 384 different combinations
of classes from the JDK and five other popular Java libraries used in our benchmarks.

Prior Work. Existing techniques attempted to address type inference for code snippets
in different manners: CSNIPPEX is based on a set of heuristics [53]; Baker extracts con-
straints from code snippets and uses a naive constraint solving algorithm to infer FQNs [1];
both StatType [2] and Coster |3] build statistical models from existing compilable source
code to predict FQN for code snippets. However, these techniques do not address all
three challenges and suffer from inherent imprecision of the used heuristics [53|, proposed
constraint solving algorithm [1], or the trained statistical models |2, 3|; especially neither
of them tackles Challenge 2 when multiple libraries contain different types with the same

12



simple names.

Our Approach. We propose SnR; a novel, constraint-based approach to automatically,
and precisely infer FQNs and required libraries to compile and reuse code snippets. SnR
builds a knowledge base from available libraries by extracting facts of the types defined
in these libraries, e.g., fields, methods, signatures, and inheritance relations. Given an
incomplete code snippet, SnR extracts constraints from the code snippet that capture the
relation between types used in the snippet; then SnR resolves these constraints by querying
the knowledge base, and outputs a ranked list of solutions where each solution is a set of
types that satisfy the constraints and likely make the code snippet compile.

Compared to the prior work based on either heuristics or statistics, SnR leverages the
type system built into programming languages and models the problem of inferring types
for incomplete code snippets as a constraint satisfaction problem (CSP). Without being
affected by the randomness, approximation, and un-interpretability from which prior work
suffers, SnR can deterministically, and precisely infer types with explicit explanations of
how and why the types are inferred.

We thoroughly evaluated SnR against the state-of-the-art tool, Coster [3]. We used
an established benchmark called StatType-SO consisting of 267 code snippets manually
collected from Stack Overflow posts [2]. SnR significantly outperformed Coster in terms of
accuracy of type inference and library recommendation: (I) In the task of inferring types for
API elements (including simple names, field accesses, and method calls as defined in [3]),
SnR achieves a high precision of 98.20% and recall of 79.66% compared to a precision of
66.35% and recall of 66.35% by Coster. (2) In the task of inferring the import statements
required for compiling code snippets, SnR is able to correctly infer 91.0% of the import
statements compared to 36.0% by Coster. (3) SnR can accurately recommend libraries for
snippets with an F; score of 0.82 compared to 0.53 by Coster. Notably, SnR recommended
the exact libraries for 183 of the 267 snippets, compared to Coster with 34. (4) As a result
of the high accuracy in type inference and library recommendation, SnR can make 73.8%
of the code snippets compilable in total compared to 9.0% by Coster.

Contribution. We make the following major contributions.

e Novelty We proposed SnR, a novel constraint-based approach to automatically, and
precisely infer FQNs, recommend libraries, and create import statements for code snip-
pets.

e Soundness and Significance We conducted extensive evaluations on real-world code
snippets in StatType-SO and the results demonstrate that SnR significantly outperforms
the state of the art in various type inference tasks.
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Table 3.1: The top-3 candidates output by SnR for Figure 3.1. The first row is the correct
solution. The FQNs in italics are implemented in multiple libraries.

4 Name Library Fully Qualified Name
DateFormat jdk java.text. DateFormat
SimpleDateFormat  jdk java.text.SimpleDateFormat

1 Date jdk java.util. Date
ParseException jdk java.text.ParseException
DateTime joda org.joda.time.DateTime
Days joda org.joda.time.Days
DateFormat android  java.text. DateFormat
SimpleDateFormat android java.text.SimpleDateFormat

9 Date android  java.util. Date
ParseException android android.net.ParseException
DateTime joda org.joda.time.DateTime
Days joda org.joda.time.Days
DateFormat jdk java.text. DateFormat
SimpleDateFormat jdk java.text.Simple DateFormat

3 Date Jdk java.util. Date
ParseException gwt org.w3c.flute.parser.ParseException
DateTime joda org.joda.time.DateTime
Days joda org.joda.time.Days

e Verifiability We made a replication package available at https://doi.org/10.5281/
zenodo . 5843327

3.2 Motivating Example

We use the code snippet in Figure 3.1 as a motivating example to illustrate the main
shortcomings of existing techniques, particularly in addressing Challenges 2 and 3.

Eclipse, a prevalent integrated development environment, has a powerful utility Quick
Fiz to fix common syntactical errors, repair partial statements, and insert missing import
statements. However, Quick Fix is inadequate for inferring the types in Figure 3.1:

(D Tt is imprecise due to its heuristic-based nature. For example, both java.sql.Date and
java.util.Date are recommended by Quick Fix even though Calender.getInstance()
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.getTime () only returns the latter.

@) It only works with libraries and types on the class path, and cannot fix errors related
to unknown types. For example, if the Joda-Time library is not on the class path, then
Quick Fix cannot create import statements for DateTime which is a type defined in
Joda-Time.

@) It cannot recommend new libraries to be added to the class path. Therefore, Quick Fix
cannot recommend the Joda-Time library to developers.

Recent research attempted to address (I) and (2) using simple constraints [1] or more
recently, statistics [2, 3]. We aimed to improve upon previous techniques and tackle (3).
Previous solutions did not consider the same FQN being implemented by multiple libraries
and did not recommend libraries as part of their inference. In the StatType-SO benchmark
of six libraries alone, both the JDK and Android libraries provide implementations for many
standard APIs. In the real world, we may want to include different versions of the same
library e.g. for supporting both Java 8 and 12 APIs. In Table 3.1, we show a sample solution
by SnR for the motivating problem Figure 3.1. The large number of FQNs with multiple
implementations (shown in italics) demonstrates the need for a new technique that can
recommend correct libraries. Including multiple libraries can lead to dependency conflicts
and create serious runtime bugs [51]. To address the shortcomings of prior solutions, we
strive to devise a technique to infer the correct FQNs from code snippets while minimizing
the conflict of recommended libraries. This is in contrast to Coster which recommends all
libraries containing the inferred FQNs.

3.3 Methodology

Template-Based

Repair Compilation

/~ AST .I AST+Types [@ Unit-+ Libraries
— _— _—

Figure 3.2: The overall workflow of SnR to repair a code snippet to a compilable compilation
unit.

Type Inference Import Repair

Snippet

Figure 3.2 shows the overview of SnR. Given an incomplete code snippet as input,
SnR aims to output a compilable compilation unit which is the input to a Java compiler
(i.e., a Java source file) and contains (I) the code snippet, (2) the necessary skeleton code
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Knowledge Base

Figure 3.3: Type inference process in SnR.

(e.g., a class definition and a method definition to enclose the code snippet) to make the
compilation unit syntactically valid, and (3) inferred required import statements together
with the libraries defining the imported types. To achieve this objective, the workflow of
SnR has the following three major procedures.

Template-Based Repair. Given a code snippet ¢ consisting of a list of statements, SnR
first attempts to create a minimal code skeleton based on pre-defined templates to enclose
¢, so that the skeleton and ¢ together form a syntactically valid compilation unit. Our
approach is similar to that outlined by Terragni et al. [73]. After the repair, the Abstract
Syntax Tree (AST) of the unit is generated for the following procedures.

Type Inference. Given the AST, SnR leverages the type inference engine to analyze
and extract the constraints. These constraints encode the typing relations among types
used in the AST. Then SnR refines the knowledge base, pre-built from a set of libraries,
with concrete types to replace the generic types previously stored. Lastly, the refined
knowledge base and constraints are given to Datalog to solve, giving us a list of solutions
for the next step.

Import Repair. In the third step, SnR interprets the list of constraint-satisfying solu-
tions, creates import statements, and inserts them into the code skeleton. To validate the
results, SnR leverages the Java compiler to compile the resulting compilation unit. If the
compilation succeeds, the compilation unit together with the import statements and the
required libraries are output as the final result.

Type inference is the most critical step in SnR. Figure 3.3 describes the internal com-
ponents of the type inference engine. In the remainder of this section, we describe these
components in detail.
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class super-interface
e [y
. interface name
generics
)i \ method

field (FQN)

(FQN) name

name return type

type argument types
number of argu-
ments

Figure 3.4: Simplified version of the knowledge base schema assuming there are no classes
with the same FQN. Each box represents a table with a table name (in blue) and a number
of column names. The underline denotes the primary key or keys that uniquely identify a
row of data. The column names in parenthesis are foreign keys which are linked to primary
keys in another table. An edge — represents a one-to-many relationship between the two
connected tables.

3.3.1 Knowledge Base

Given a set of libraries, we build the knowledge base which can be queried to resolve
ambiguities (§3.3.3) when gathering constraints and solving constraints (§3.3.4).

Content

A simplified schema for our knowledge base is described in Figure 3.4. For each type, the
knowledge base stores the FQN, supertype, super-interfaces, fields, and methods. Generic
types are stored as is in the knowledge base. For example, List.get () in the knowledge
base has the type T which will be refined before being given to Datalog when solving
constraints, discussed in §3.3.4.

Note that the schema in Figure 3.4 is simplified to ease presentation with the assumption
that there are no multiple classes with the same FQN. Moreover, library information (e.g.,
which library defines a type) is also omitted in Figure 3.4. The real knowledge base in SnR
handles both with additional database table columns.
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Table 3.2: Query functions to retrieve types from knowledge base.

Query Function Description

Qgimplename (name) Returns the types with the given simple name
Qgn(name) Returns the types with the given fully qualified name
Qfierq(name) Returns the types that have a field called the given name

Qunethod(name, num_args) Returns the types defining a method with the given name which takes
num_args number of parameters

Query Functions

We define the following query functions to retrieve information from the knowledge base.
Each function represents a retrieval criterion and the parameters parameterize the criterion.
Each function returns a set of types (i.e., classes, interfaces, and annotations) that satisfy
the specified retrieval criterion. Table 3.2 lists the query functions used by SnR.

Besides querying normal types, Qgimpiename has specialized support for querying inner
types (e.g., inner classes, inner interfaces). Note that an inner type can have multiple simple
names. Consider an inner class Builder with an outer class java.util.Calendar. It is
possible to reference this type with either of the two simple names Calendar.Builder or
Builder using import statements java.util.Calendar or java.util.Calendar.Builder
respectively.

Qgimplename supports queries with different forms of simple names. In the example
above, this query function can be called with either Qgmpiename("Calendar.Builder") or
Qsimplemme("Builder").

3.3.2 Type Inference: Extracting Constraints

Given an AST, SnR traverses it and extracts the constraints capturing the relations among
the types used in the AST. Specifically, SnR concentrates on type elements defined below,

Definition 3.3.1 (Type Elements). Type elements in an AST refer to the nodes that
define new types or use types, i.e., type declarations (e.g., class, interface, and annotation
declarations), explicitly used types, statements, and expressions.

Note that prior work [3, 2| uses a different term API elements, which is a subset of type
elements and focuses on only explicitly used types ¢.e. simple names, field accesses, and

method calls. For high-precision type inference, SnR infers not only explicitly used types
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Table 3.3: Constraints used by SnR. Each constraint specifies a property that a type
variable 7 should have, or a relation among multiple type variables.

Constraint

Description

simplename (7, name)
fqn(7, name)

field(7, name, Ty;era)
method (7, name, Tsrg, Tret)
paramtype (r N T;rg s Tpa'ram)
arraytype (T, Torp)
subtype (Tparents Tenitd)
extend (T, Tsuper)
interface (7T, Tinterface)
annotation(r)
innerclass(7T, Tinper)

7 has the given simple name

7 has the given FQN name

7 has a field with given name of the type Tsciq

7 has a method with given name, argument types 7,4 and return type 7,
T with parameter 74,4 builds the parameterized type Tparam
An array of 7 is type Tq.r

Tenild can be implicitly converted to Tperent

T extends Tgyper

7 implements the interface of Tinterface

T is an annotation type

7 is has an inner class type of Tinner

but also implicitly used types in expressions, e.g. variables, method arguments, method
returns. All the AST nodes used by SnR for type inference constitute type elements in this

thesis.

Creating Type Variables

For each type element, SnR first creates one or more type variables to represent the types
defined or used in the type element or in the components of the type element. For simplicity,
we use T to denote a type variable. Given the type element (a statement) below,

Date today = Calendar.getInstance().getTime();

SnR creates four type variables.

Type Variable

Description

71
T2
73
T4

the type of Date

the type of Calendar

the return type of Calendar.getInstance()

the return type of Calendar.getInstance.getTime ()
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Table 3.4: A subset of rules to extract constraints from type elements. I' denotes an
environment that maps an expression, e, to a type variable, 7; ¥ denotes a vector of x
where = can be an expression e, a type variable 7, or type t; a € ¥ denotes the check
whether a is an element in the vector Z. I'(€) denotes a look up of every element in € on
the environment I', and returns a vector of type variables with each variable corresponding
to an expression in €.!

Category ~ Name Code Type Variables Constraint

Class Declaration cs cextty impl t5 c:T b Tt TS extend(7, 1)

V7; € T3, interface(r, 7;)

Type Type t t:T simplename(T,t)
Array Type t ] t:m,L(t]) =7 arraytype(7, 72)
Paramed Type  t;{ts) t: Tty 7, Dt () = 73 paramtype(7y, 75, T3)
Statement If if (e) {5} Te): 7 subtype(, "boolean")
While while (e) {5} Ie): 7 subtype(, "boolean")
Expression Assignment e = e I'(e1) =m,T(e2) =7 subtype (71, )
Annotation Qt t:T annotation(7)
Inner Class t.ct t:m,L(tct)=ct:m simplename(Ty, ct)
innerclass(7y, 72)
Qualified Name n . sn s T fqu(r, n.sn)
Field e.f Lle)=m,T(e.f)=T(f) =7 field(m, f, 72)
Method er.m (€3) T(e1) = n,I'(é3) = 75, T(e1.m(€3)) = 73 method(ry, m, 74, 73)
71 = [create 7, for 7, in 73] (75, Tp) € (T3, 74), subtype(T,, Ts)
New Instance  new t(€) t:m,I(€) =7, '(new t(€)) =73 method(7y, "<init>", 74, 73)
71 = [create 7, for 7, in 73] (75, p) € (73, Ta), subtype(7,, 7s)
Instance Of e instanceof ¢ t = 71, (e instanceof t) = 7 subtype(s, "boolean")
Array Access e1e] T(e1) =7, (ea) =72 subtype(7y, "int")

Extracting Constraints

Based on the type variables created from a type element, SnR further extracts constraints
from the type element to capture the relations among the type variables. Table 3.3 lists all
the types of constraints used in SnR, and Table 3.4 lists the concrete rules to create type
variables and constraints for type elements.

Take the class declaration for an example. The rule with the name ‘Declaration’ in
Table 3.4 specifies that for a class declaration ¢, SnR generates at least two type variables

Wector 7; is created for method and new instance expression where new type variables Tp is created
for each type variable in 73; for each pair of original and newly created type variable (7, 7,,) from the two
vectors (73, 71), generate a subtype constraint.
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(7 for ¢ and 7 for the super class of ¢), and a list of type variables 73 (75 can be empty) for
the interfaces ¢, of ¢ with each type variable 7; in 7 representing the type of one interface.
Then SnR creates one constraint extend(r, 1) to capture the typing relation between ¢
and t;, and one interface(r, 7;) for each implemented interface.

SnR makes extensive use of the subtype constraint in order to model implicit type
conversions of both primitive and reference types allowed in Java (e.g. in assignments or
when passing method arguments) and to constrain certain known types in the AST (e.g.
the conditional in an if statement is a boolean).

An Example. Following the rules outlined in Table 3.4, SnR creates the following
constraints over the type variables 7, 75, 73, and 74 of the example statement in §3.3.2.

Constraints Description
simplename (7, "Date") 71 has the simple name Date
simplename (75, "Calendar") 7o has the simple name Calendar

method(72,"getInstance",[],73) 72 has a method named getInstance that takes no arguments with
the return type of 73

method(73,"getTime",[|,74) 73 has a method named getTime that takes no arguments with the
return type of 74
subtype (71 ,74) 7 has a subtype 7, because of the assignment

3.3.3 Type Inference: Resolving Ambiguities

From the constraint generation rules laid out in Table 3.4, inner classes, qualified names,
and field expressions can bring ambiguities into the process of extracting constraints. For
example,

java.util.Collections.EMPTY_LIST

for the first identifier java in this expression, there are four broad categories of possible
interpretations,

(D javais a variable defined locally in the current code snippet, e.g., a local variable, a
method parameter, or a class field.

2) javais a class defined locally in the current code snippet, e.g., an inner class.

@) java is the name of a type (e.g., a class or an interface) that is defined externally
but not in the current code snippet.

@ java is a part of a package name, and the package name is used to form a FQN.
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The remaining identifiers are then potentially a mix of packages, classes, inner classes, and
field references. It is impossible at the parsing time to determine which of these cases the
current code snippet refers to without import statements.

SnR verifies these interpretations in the order they are listed. (I) and (2) can be verified
by examining the code snippet for locally defined variables and types. On the other hand,
without import statements, (3) and (4) cannot be verified. SnR overcomes this challenge by
leveraging the knowledge base. For the example above, by performing a knowledge base
lookup Qgimpiename("java"), @) can be ruled out. Similarly, by performing multiple €y,
queries to find the longest matching FQN, we find that (4) java.util.Collections is the
best possible interpretation to resolve the ambiguity.

Inner Class and Field Constraints. The subsequent unmatched parts could be
inner classes or fields. Inner classes can be found by performing additional look-ups to the
knowledge base (Qgimpiename). The rest of the identifiers are considered to be fields.

In the event that the knowledge base is not complete, i.e., the knowledge base does not
have information about the symbol, then SnR may generate incorrect constraints. However,
this can be easily addressed by incorporating more libraries into the knowledge base.

3.3.4 Type Inference: Solving Constraints

Given a code snippet s, the set C' of the constraints extracted from s by the rules in
Table 3.4 can be directly solved by a Datalog solver against the knowledge base, if s does
not define or use any generic methods or types.

However, if s uses generics inside, due to the complexities of Java generics and the
limited expressiveness of Datalog, we propose a two-step process to solve C'. Generally
speaking, for s and C', SnR first generates a new, possibly smaller knowledge base from the
original knowledge base €2 by replacing generic types in 2 with concrete types, and then
uses the small knowledge base as Datalog facts to solve C.

The small knowledge base can be viewed as a refinement of ) with more concrete
type information, and thus is referred to as a refined knowledge base. The main reason for
introducing this refinement step is that €2 only has signatures of generic types and methods
and it is not easy to encode the typing rules of Java generics completely in Datalog.
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Example

We use the following code snippet as an example to demonstrate how refined knowledge
bases are generated.

1 List<Date> lod = new ArraylList<>();
> lod.get (0);

The following table shows the constraints extracted from the code snippet above. There are
five type variables in total. The purposes of 7y, 75, and 73 are for List, Date, and ArrayList
respectively; 74 represents the type of List<Date> via the constraint paramtype(7, 72, 74),
while 75 is the return type of lod.get (0).

Constraint ‘ Constraint
simplename(7y, "List") paramtype(Ty, T2, T4)
simplename(7s, "Date") subtype(74, 73)

simplename(7s, "ArrayList") | method(ry, "get",["int"], 75)

Querying Type Candidates. 'To instantiate the generic types in the original knowl-
edge base (2, we need to retrieve all the types from {2 that are relevant to the constraints.
Therefore for each type variable 7 and each simplename, fqn, field, and method con-
straints on 7, we use the corresponding query functions defined in Table 3.2 to retrieve all
possible candidate types for 7. For example, for the simplename constraints of 7y, 75, and
T3 we can use Qgimpiename t0 retrieve the following type candidates for each type variable
(Note that the candidates are pruned for illustration purpose.).

Constraint Query Candidates

simplename(7y, "List") Qgimplename("List") java.util.List
java.awt.List

simplename(7y, "Date") Qgimplename("Date™) java.util.Date
java.sql.Date

simplename(7s, "ArrayList") Qsimpiename("ArrayList") java.util.ArrayList

Building Refined Knowledge Bases. Based on the information of the type candi-
dates, we next build the refined knowledge base. We first look into C' to find paramtype con-
straints which represent instantiations of generic types in code snippets. It is paramtype(y,
T3, T4) in this example. From this constraint, we know that 71 should be a generic type,
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and therefore we remove java.awt.List from the candidate set of 71 as this class is not
generic; T, can be either java.util.Date or java.sql.Date; therefore, 74 can be either
of the following two concrete types

e java.util.List<java.util.Date>
e java.util.List<java.sql.Date>

From the constraint subtype(7y4, 73), we need to further instantiate two concrete classes of
java.util.ArrayList as follows,

e java.util.ArrayList<java.util.Date>
e java.util.ArrayList<java.sql.Date>

Next, we create a refined knowledge base {2 by combining these four concrete classes and
2. The method T java.util.List.get(int) in ) becomes the following two methods in
Q/

e java.util.Date java.util.List<java.util.Date>.get(int)

e java.sql.Date java.util.List<java.sql.Date>.get(int)

Constraint Solving. In the end, we use a Datalog solver to solve C' by using 2’ as the
Datalog facts. The benefit of using €’ is obvious: when the Datalog solver sets 75 to either
concrete Date type, 75—the return type of the method call get(0)—will have the same
type as 7o, thanks to the specialized get (int) methods in €. In contrast, if we use €2 as
the Datalog facts, the Datalog solver cannot infer that 7 should always be the same as 7.

3.3.5 Type Inference: Candidate Prioritization

Given a code snippet s and the set of type variables T" extracted from s, the type inference
engine in §3.3.4 outputs a set of FQNs for each 7 € T as well as sets of libraries defining
each FQN.

Solution Candidates. Then SnR processes the type inference result of ¢ and outputs
a list of solution candidates. Each candidate is a set of triples in the form
{(7, fqn, lib)|T € T, fgn is a FQN for 7, lib is a library defining fgn}

Prioritization Heuristic. To make SnR useful and accurate at repairing code snippets,
we design a simple yet effective prioritization heuristic to rank these solution candidates so
that the candidates at the top of the ranking list are more likely to be correct than those
at the bottom. The general principle of this heuristic is to minimize the number of unique
libraries in a candidate. Take Table 3.1 for an example. The third candidate is ranked
after the first two because the third one has one more library, i.e., gwt. The intuition
behind our heuristic is similar to the clustering hypothesis proposed in [53].

24



Table 3.5: Statistics of the StatType-SO benchmark.

(a) The number of public or protected, classes, fields, (b) Top 5 simple class names in the
and methods for each library in StatType-SO. StatType-SO dataset with their re-
spective number of occurrences.

Library Classes Fields Methods

Android 2,357 8,943 22,933 Class Name  Occurrences
JDK 11,881 28,443 105,807 Builder 71
JodaTime 143 166 3,053 EntrySet 40
GWT 1,518 542 9,288 Type 38
Hibernate 2,356 1,681 18,749 Entry 30
XStream 628 146 3,855 PropertyKeys 29

Total 18,883 39,921 163,685

3.4 Evaluations

We have conducted extensive evaluations of SnR in different aspects to answer the following
research questions.

RQ1: How does SnR perform at type inference?

RQ2: How does SnR perform at resolving import statements?
RQ3: Does SnR recommend the correct libraries?

RQ4: How does SnR perform at making code snippets compilable?

RQ1 to RQ4 evaluate the performance of SnR compared to the state-of-the-art type infer-
ence tools. Since Coster has been shown to match or outperform prior techniques [3]; thus
in this thesis we only compare SnR with Coster. The source code of Coster, along with
their model, was obtained from its GitHub repository [55].

We use precision, recall, and F} scores to measure the performance of SnR considering
only the top candidate, as used by Coster.

recommendations made N relevant

Precision = -
recommendations made
recommendations made N relevant
Recall = -
recommendations requested
o 2 x Precision x Recall
I " Precison + Recall
Dataset. We use an existing dataset referred to as StatType-SO, which was used

in [2, 3]. The dataset consists of 267 snippets from six popular libraries. Table 3.5 lists
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various statistics of Stat Type-SO. All the public classes, fields, and methods are counted not
including inherited fields and methods. This dataset represents how developers use a wide
variety of real Java libraries in practice, and evaluations using this dataset demonstrate
that our technique is sound for libraries ranging from small to large. This benchmark which
consists of the code snippets and the libraries was obtained from the original benchmark
authors Phan et al. |2].

Implementation. SnRis a single-threaded Java application and uses MariaDB to serve
as the knowledge base. The constraints are solved using the Soufflé [20] Datalog solver.
We use the Eclipse Java Compiler to create and traverse ASTs. A replication package is
available at https://doi.org/10.5281/zenodo.5843327.

Hardware Configuration. All experiments were conducted on an eight-year-old laptop
with Intel Core i5-4300m CPU 2.60 GHz and 16GB RAM. The operating system is Linux.

3.4.1 RQ1l: How does SnR perform at type inference?

We measured SnR’s and Coster’s performance in recommending FQNs for APT elements (i.e.,
simple names, field accesses, and method calls as defined in [3]) in StatType-SO. The results
are summarized in Table 3.6. SnR significantly outperforms Coster in precision (98.20%
vs 66.35%) and recall (79.66% vs 66.35%). Coster often incorrectly recommends the more
popular Apache Commons logging library as opposed to android.util.Log, despite the
fact they have different logging methods. SnR on the other hand is able to achieve 100%
precision for three out of the six libraries in the dataset.

Table 3.6: Performance of type inference for API elements.

Coster SnR
Precision  Recall Precision Recall
Android 43.28% 43.28%  100.00%  93.64%
JDK 56.24% 56.24% 97.37% 71.12%
JodaTime 57.14% 57.14%  100.00%  89.47%
GWT 90.75% 90.75% 96.68%  75.84%

Hibernate 90.38% 90.38% 99.32%  94.81%
XStream 88.41% 88.41%  100.00% 100.00%

Total 66.35% 66.35% 98.20%  79.66%
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Table 3.7: Performance of type inference for type elements.

Total Analyzed Correct Precision Recall

Android 1,690 1452 1,308 90.08% 77.40%
JDK 12,450 10,245 9,166 89.47% 73.62%
JodaTime 1,283 1,051 1,013 96.38% 78.96%
GWT 2,273 1,951 1,679 86.06% 73.87%
Hibernate 1,583 1,496 1,407  94.05% 88.88%
XStream 864 864 804 93.06% 93.06%
Total 20,143 17,059 15,377 90.14% 76.34%

To further understand the performance of SnR, we applied SnR to infer FQNs for all
type elements (defined in Definition 3.3.1) in StatType-SO, which is a much more difficult
task than inferring FQNs for API elements because type elements are a large super set of
API elements. Note that Coster is not capable of doing this task.

To compute the ground truth, for each code snippet, we provided the proper libraries
to Eclipse and used Eclipse to find and compute types for the type elements in the dataset.
In the end, Eclipse found 20,143 type elements along with their types in total.

Table 3.7 shows the performance of SnR on this task. Among those type elements, SnR
analyzed 17,059 ones and 15,377 were correctly inferred, achieving a precision of 90.14% and
recall of 76.34%. This high precision and recall for all type elements further demonstrates
the advantages of SnR over the state of the art, which also enables SnR to accurately, and
reliably repair incomplete code snippets.

3.4.2 RQ2: How does SnR perform at resolving import state-
ments?

We use SnR and Coster to resolve import statements for all code snippets. Because Coster
was not explicitly designed to support catch and annotation expressions, we automatically
completed 56 of those import statements for Coster.

Table 3.8 summarizes the results. Overall, SnR correctly resolved 91.0% of the import
statements, whereas Coster could only resolve 36% though 56 import statements were
resolved by us.

Different from Table 3.8 which shows the information on completed import statements,
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Table 3.8: Performance of inferring import statements.

Total Imports

SnR Completed

Coster Completed

Android 220 205 (93.2%) 18 (8.2%)
JDK 332 204 (88.6%) 174 (52.4%)
JodaTime 134 118 (88.1%) 35 (26.1%)
GWT 301 265 (38.0%) 90 (29.9%)
Hibernate 159 149 (93.7%) 101 (63.5%)
XStream 152 150 (98.7%) 49 (32.2%)
Total 1208 1,181 (91.0%) 467 (36.0%)

—o— Coster —a— SnR

180
160
140
120
100

# of snippets

- | —

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.5: The distribution of code snippets w.r.t. number of missing import statements
after repair using SnR and Coster. Points with y = 0 are not plotted.
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Figure 3.5 shows the information on missing import statements. The x-axis is the number
of missing import statements ranging from 0, and the y-axis is the number of code snippets
with the x number of missing imports after being repaired by either SnR or Coster. SnR
can completely repair 198 code snippets without missing import statements, compared
to only 35 by Coster; for SnR, most of the rest code snippets have one or two missing
imports, while for Coster, most of the rest have one to seven missing imports. This figure
demonstrates that SnR is able to resolve more import statements accurately than Coster,
and thus can potentially save more developers’ time.

Real-world example. Recently, Coster has been released as an Eclipse plugin [50] for
finding FQNs in code snippets. The author produced a demonstration video [57] illustrating
the new integration with Eclipse to fix import statements. In the video, the authors
attempted to repair the code snippet from a Stack Overflow post [58] for which Coster
failed to create import statements for DateTimeZone and DateTimeFormat. We applied
SnR on the same code snippet, and SnR precisely resolved all import statements.

3.4.3 RQ3: Does SnR recommend the correct libraries?

We evaluated the accuracy of SnR’s library recommendation. We manually examined each
code snippet in the dataset to find all the dependent libraries, not just the six used in the
previous evaluations. There were 33 unique libraries in total.

We compared SnR against a naive (SnRyave) approach where libraries are sorted alpha-
betically and taken greedily until all the missing libraries are satisfied, to validate whether
our candidate prioritization heuristic detailed in §3.3.5 is effective. We also compared
against Coster which recommends all libraries containing the inferred FQNs. For each
code snippet, the recommendation result is classified into one of the following categories.

Same if the tool recommends the exact expected libraries.

Different if the tool recommends one or more alternatives for some expected libraries.
Extra if the tool recommends a superset of the expected libraries.

Missing if the tool recommends a subset of the expected libraries.

None if the tool incorrectly recommends no libraries.

Table 3.9 lists the classification result. SnR correctly recommended the exact libraries
for 183 code snippets, compared to 118 for SnRyaive and 34 for Coster. SnR also achieved
the highest precision and recall, and thus we concluded that SnR performed the best among
the three tools, which further demonstrates that our candidate prioritization strategy in
§3.3.5 is effective in improving the accuracy of type inference.
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Table 3.9: SnR library recommendation compared to a naive candidate prioritization
SnRpaive, and Coster.

Same Different Extra Missing None Precision Recall F)

SnR 183 62 11 4 7 0.82 0.83 0.82
SnRnaive 118 75 64 3 7 0.68 081 0.72
Coster 34 36 129 8 60 047  0.68 0.53

3.4.4 RQ4: How does SnR perform at making code snippets
compilable?

Efficacy

To evaluate the efficacy of SnR at automatically making code snippets compilable, we
compiled the repaired code snippets and recorded the remaining errors. SnR achieved an
average of 73.8% where 197 out of 267 snippets were compilable after the repair. Coster
on the other hand could make only 9.0% (24 out of 267) of snippets compilable. Our high-
precision type inference technique allows for higher-quality repair and results in a larger
number of compilable code snippets thus allowing for more information to be recovered
from each code snippet.

Efficiency

SnR is efficient enough to be used in practice. Averaged over five runs, SnR’s repair process
finished in an average of 11.7 seconds for each snippet and half the snippets finished within
8.4 seconds. As seen in Figure 3.6, the time SnR takes to repair a snippet increases as the
number of imports in a snippet increases. But even for a very complex code snippet, the
slowest one finished in 82.2 seconds on an eight-year-old laptop.

Coster can finish repairing a code snippet very fast in seconds, despite its low efficacy
in repairing code snippets for compilation. On the other hand, Coster is based on machine
learning, and requires training a model, which can take days to finish.
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Figure 3.6: The time it takes to repair a snippet with X number of imports. Each x
represents a snippet.

3.5 Discussion

In this section, we will discuss potential applications of our work (§3.5.1), along with the
limitations of our technique (§3.5.2) and potential threats to validity (§3.5.3).

3.5.1 Application

SnR has immediate applications for software engineering.

IDE Improvement. The constraint-based technique used in SnR can be readily used
by existing IDEs to provide accurate code completion suggestions. For example, given
the code snippet shown in Figure 3.1, currently, Eclipse does not properly leverage the
relation between Date and the other APIs, and thus may incorrectly rank java.sql.Date
before java.util.Date. With the help of SnR; Eclipse can precisely recommend im-
porting java.util.Date. Another salient application of SnR is to automatically import
dependencies for pasted code snippets. Coster has provided an Eclipse plugin of a similar
purpose [56]. As demonstrated in §3.4, SnR outperforms Coster and can effectively improve
the performance of such an IDE feature. As code snippets are generally small and develop-
ers infrequently copy large chunks of code from Stack Overflow, thus SnR’s inference time
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is sufficient for real world use.

Dependency Repair. Dependency-related issues account for a large number of build
failures at Google [59]. The state-of-the-art tool for fixing dependency issues is DeepDelta,
which leverages a deep learning model to learn how developers fix such issues in the past,
and apply the model for new build failures. SnR can complement DeepDelta, as SnR makes
full use of type systems built in programming languages, overlooked by DeepDelta. With
SnR, failed compilation due to missing libraries can be automatically repaired by running
the inference and adding the suggested libraries.

Stack Overflow Study. SnR can increase the precision and scope of analysis on online
code snippets [60, 61, 62, 63, 64]. Tt can be used to fix the incomplete code snippets, and
the followed analyses can take advantage of the compilable snippets which can offer more
semantic information about the snippets; to provide better metrics on what makes a good
code snippet [00]; to aid training of algorithms that use Stack Overflow snippets [61]; to
improve existing IDE Stack Overflow code recommendation tools [62].

3.5.2 Limitation

Certain code snippets reference classes not in the knowledge base and thus cannot be in-
ferred e.g. from a class written in a tutorial. This limitation impacts the efficacy of both
SnR and previous solutions alike. We address this limitation by providing partial solu-
tions by ignoring the type variables without candidates which may introduce inaccuracies.
However, as can be seen from RQ1-4, SnR still outperforms the state-of-the-art tool.

3.5.3 Threats to Validity

Internal. We did our best to minimize potential internal validity issues. Our SnR im-
plementation may contain bugs leading to incorrect repair. We mitigated this by reviewing
the instances where SnR is unable to perform repair steps. To ensure the integrity of our
evaluations, we externalized the evaluation scripts to ensure both SnR and Coster are eval-
uated in the same manner. For Coster, we pulled the code and model from their public
GitHub repository and followed their instruction to set up their tool. These mitigations
ensure we're presenting a fair comparison for SnR.

External. In terms of external validity, there is a risk our work may not generalize to
other programming languages. The constraints are fairly universal and can apply to other
object-oriented languages. Most languages have fields and methods. Generics are common
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in other typed languages, e.g. C#, Rust, Swift, TypeScript. The constraint solving stage
is language agnostic. Thus our technique does not rely on Java specific constructs and can
be adapted for other programming languages.

3.6 Related Work

This section discusses prior work in type inference, partial program analysis, Stack Overflow
snippet analysis, and automated program repair.

Type Inference. The area of type inference has a rich history in programming lan-
guages, especially object-oriented languages [05, 66, 67, 68, 69]. Constraints have also
been used for type analysis [70, 67]. Our work departs from existing works in this area by
working with incomplete code and leveraging a knowledge base.

Type inference on incomplete code has seen some recent interests |1, 2, 3]. Our work is
similar to some of the earlier works from Subramanian et al. [1] in the use of constraints
but differs in some key ways such as (1) generic type handling, (2) method of solving,
and (3) selection of multiple compatible candidates. Their tool Baker relies on simple
constraints and does not provide library recommendations. More recent works surpassed
Baker’s performance using statistical models to improve inference accuracy [2, 3|. These
models are trained using a large set of existing [71] or collected popular GitHub projects and
are evaluated using hand-collected Stack Overflow posts including StatType-SO. Saifullah
et al. [3] improved upon the model by Phan et al. [2] by leveraging local and global context.
Our work improves upon the state of the art and complements the existing techniques.
Future techniques can incorporate the accuracy of constraint-based techniques with the
performance of statistics-based ones.

Deep learning models |72, 73] have been used to conduct type inference on dynamically
typed languages. Unlike SnR, these techniques often use additional sources of information
such as comments, and identifier names to conduct their inference.

Partial Program Analysis. RecoDoc [71] is a tool for analyzing partial programs
which are subsets of the program source files. Code snippets on the other hand can be
considered to be subsets of partial programs. Thus, the techniques for analyzing partial
programs are insufficient for analyzing code snippets.

Stack Overflow Snippet. Past research has leveraged Stack Overflow snippets to build
better development tools [61, (2], to study usages in open source projects [63, 75, 64, 70],
and more |77, 53, 2, 3]. Recent work has used heuristics-based approaches to automatically
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synthesize compilable code snippets [53, 78]. Our work focuses on type inference and greatly
improves upon precision compared to the existing state-of-the-art solution.

Automated Repair. In the area of automated repair, prior research has attempted to
address compiler errors using neural networks [59], semantic errors leveraging test cases [79],
or specifications (pre- and postconditions) [30]. Our work focuses on code snippets which
are incomplete code, without tests or specifications in most cases. Our technique needs to
be more flexible and cannot rely on having test cases or specifications.

3.7 Chapter Conclusion

In this chapter, we proposed SnR, a novel, effective, constraint-based technique to auto-
matically infer missing import statements and dependent libraries for Java code snippets.
Given an incomplete snippet, SnR first automatically gathers constraints from the snippet,
then solves these constraints by querying a knowledge base built from a large collection
of Java libraries, and finally transforms the solutions to the constraints to import state-
ments and dependency libraries. Our comprehensive evaluation of SnR on the StatType-SO
benchmark consisting of 267 snippets demonstrates that SnR significantly outperforms the
state of the art: SnR completed 91.0% of the import statements, and compiled 73.8% of
the snippets. Even for the fail-to-repair snippets, our best-effort repair left most of them
with only one missing import statement. The high inference precision of SnR opens up
new opportunities for boosting developers’ productivity with code snippets.
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Chapter 4

Evaluating the True Performance of
LLMs for Java Code Snippets

After the introduction of SnR, advances in machine learning have enabled LLMs to achieve
strong performance in type inference for Java code snippets. This chapter investigates the
performance of LLMs in greater depth and demonstrates that existing evaluations may
overestimate their true capabilities, potentially due to data leakage.

4.1 Introduction

Current approaches to type inference for Java code snippets generally fall into two cate-
gories: constraint-based and machine learning (ML)-based techniques. Constraint-based

methods build a knowledge base of libraries and the types contained within |1, 1]. SnR [/]
leverages this knowledge base and uses constraints extracted from the code snippet to
identify the precise types being used. In contrast, ML-based approaches |2, 3, 5, 7| learn

from prior examples of type usage in existing code to perform type inference.

ML-based techniques often produce incorrect inferences, due to their limited under-
standing of code structure and the rules governing Java’s type system. Recent advance-
ments in LLMs, such as OpenAl’s proprietary GPT family and Meta’s open-weight Llama
models, offer new possibilities for overcoming these limitations. By leveraging training on
diverse and extensive datasets, LLMs have shown potential in performing various software
engineering tasks [81]. Prior studies [5, 7, 8| suggest that LLMs achieved performance
comparable to that of the state-of-the-art, SnR.
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Figure 4.1: The general workflow. The libraries used to collect code snippets in StatType-
SO were also used to generate code snippets in ThaliaType. These code snippets are used
in RQ1 and their transformed versions are used in RQ2 to evaluate various type inference
techniques. Their results are compared to evaluate the true type inference capabilities of
LLMs for Java code snippets. The red color represents the potential for data leakage.

However, the evaluation of the prior techniques |5, 7, 8] is potentially affected by data
leakage [32] where the training dataset includes the benchmark dataset, and data leakage
allows LLMs to regurgitate the training data rather than conducting type inference. The
benchmark suite, Stat Type-SO, used for evaluating type inference techniques has been fully,
publicly available on GitHub since 2017 [23]. As shown in Table 4.1, recent state-of-the-art
LLMs have knowledge cutoff dates in late 2023, creating the potential for leakage. Thus
it remains uncertain whether the LLMs’ strong performance stems from their ability to
understand the semantics of the code snippets or merely from retrieving the ground truth
from their training data. Since the exact training data for LLMs are kept confidential,
detecting such leakage is difficult [34, 85]. While recent work has called attention to this
data leakage problem for software engineering research [36, 50|, no study has thoroughly,
empirically evaluated LLMs’ performance on type inference on code snippets.

In this chapter, we thoroughly evaluate LLMs’ type inference performance on Java code
snippets to better understand the strengths and limitations of LLMs on type inference, the
impact of data leakage, and uncover potential limitations of LLMs.

First, we investigated StarCoder2, an open-weight LLM trained on a publicly available
training dataset The Stack v2. From exploring The Stack v2, all code snippets from
StatType-SO were found, meaning that StarCoder2 was trained using code snippets from
StatType-SO. Thus StarCoder2 can potentially recall the code snippets and their expected
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import statements from training rather than performing type inference. StarCoder2’s
performance is investigated alongside Llama and GPT models to glean further insight into
the behaviors of LLMs. We organized our inquiry into the following two research questions.

RQ1: How well do LLMs perform type inference on unseen code snippets?

To address data leakage, we generated a new dataset named ThaliaType using Thalia, a
program synthesis technique originally designed for testing static type systems. ThaliaType
comprises 300 code snippets guaranteed to be unseen by the evaluated LLMs, thereby
avoiding data leakage. Furthermore, we used the same set of libraries as used in StatType-
SO to generate ThaliaType, (1) to enable a direct comparison of type inference performance
between the two datasets, and (2) to ensure the evaluated LLMs were consistently and
sufficiently trained on the same set of types used in both datasets. By evaluating LLMs
on ThaliaType and contrasting those results with those from StatType-SO, we can better
understand the impact of data leakage on performance.

RQ2: To what extent do LLMs understand the execution semantics of code
snippets?

To investigate whether LLMs truly understand the semantics of code snippets during
type inference, we designed semantic-preserving code transformations to create syntacti-
cally different versions of the input code (§4.6). These transformations were intended to
hinder LLMs’ reliance on memorized training data by making direct recall more challeng-
ing. By observing how LLMs’ performance changes on these semantically equivalent but
syntactically distinct versions, we can gain insights into their ability to grasp the underlying
semantic meaning of the code.

Following the recommendation from prior software engineering research [50], we eval-
uate LLM’s performance using three open-weight models StarCoder2, Llama3.1:8b, and
Llama3.1:70b, along with state-of-the-art closed-source models GPT-40 and GPT-40-mini (see
Table 4.1b). Among these, StarCoder2 serves as a baseline model with confirmed data
leakage (see §4.4.2). For additional comparison, we include SnR [!], a state-of-the-art
constraint-based type inference technique, as a non-LLM baseline. This evaluation aims
to provide deeper insights into the potential limitations of using LLMs and to guide future
research in evaluating LLMs’ performance on other software engineering tasks.

In RQ1, we found LLMs are highly likely to be affected by the data leakage issue and
are prone to making incorrect inferences on code snippets from ThaliaType. All tested
LLMs exhibited a similar decline in performance as StarCoder2:15b which experienced
a 66.8% decrease in Fl-score. For example, Llama3.1:8b and GPT-40 showed compara-
ble declines of 67.2% and 48.5% respectively. On both StatType-SO and ThaliaType,
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Table 4.1: Overview of the datasets and language models used to evaluate LLM perfor-
mance. The early publication of StatType-SO, combined with the late knowledge cutoff
dates of the models, increases the likelihood of data leakage.

(a) The datasets used for evaluation.

Dataset Publication Year #Code Snippets
Stat Type-SO 2017 [83] 267
ThaliaType Not Applicable 300

(b) Evaluated models with their respective version identifiers, knowledge cutoff dates, and whether
StatType-SO was present in their training data. The question mark denotes that StatType-SO’s
presence cannot be confirmed.

Model Version Knowledge Cutoff Data Leakage
StarCoder2:15b  instruct-v0.1-q4 0 September 2023 [20] v
GPT-40 2024-08-06 October 2023 [37] ?
GPT-40-mini 2024-07-18 October 2023 [37] ?
Llama3.1:8b instruct _q4 0 December 2023 [25] ?
Llama3.1:70b  instruct_q4 0 December 2023 |25] ?

StarCoder2:15b outperformed Llamagd.1:8b but was outperformed by Llama3.1:70b, GPT-
40-mini, and GPT-4o. In contrast, SnR, which is not affected by data leakage, obtained a
precision of 84.15% and a recall of 84.43% on ThaliaType. The consistent drop in LLMs’
performance between the baseline StarCoder2:15b and other models suggests that all tested
LLMs are potentially affected by data leakage. In addition, although StarCoder2:15b was
trained on StatType-SO snippets, it only achieved an Fl-score of 81.67%, indicating that
even in the presence of data leakage, models do not perfectly recall the training data.

In RQ2, LLMs showed robustness to individual transformations on both benchmark
suites, and also to the combined transformation on ThaliaType code snippets. Star-
Coder2:15b showed only a 3.0% decrease in Fl-score in the worse case, while Llama3.1:8b
experienced a 7.9% drop. However, combined transformations on StatType-SO consis-
tently led to performance degradation across all models, including a 16.8% reduction for
StarCoder2 and up to 30.0% for Llama3.1:8b. Notably, these same combined transforma-
tions did not consistently degrade performance on ThaliaType. In fact, StarCoder2:15b
experienced a slight improvement in F1-score. One possible explanation is the presence of
data leakage, which may allow models to recall answers from training. When transforma-
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tions introduce enough variation to prevent direct recall, the models are forced to rely on
semantic reasoning. Under these conditions, their performance on StatType-SO aligned
more closely with that on truly unseen data.

Therefore, future evaluations of LLM-based techniques should also evaluate general-
izability, defined as the ability for LLM-based techniques to maintain consistent perfor-
mance across unseen code snippets, by incorporating both transformed code snippets and
ThaliaType, rather than relying solely on StatType-SO.

Contribution.  We make the following major contributions.

e We introduce ThaliaType, a new dataset constructed through a novel adaptation of
Thalia for rigorously evaluating the type inference performance of LLMs while mitigat-
ing potential bias from data leakage. Using ThaliaType, we demonstrate that prior
evaluations based on StatType-SO are likely affected by data leakage, leading to inflated
and potentially misleading performance results.

e We evaluate whether LLMs understand the execution semantics of code snippets by
applying transformations that preserve the semantics and comparing their effects. Our
results on StatType-SO and ThaliaType show that LLMs are generally able to main-
tain performance across individual transformations. However, complex transformations
on StatType-SO result in disproportionately large performance drops compared to both
their effects on ThaliaType and the individual transformations. This lack of general-
izability can be caused by data leakage where models learned the correct answer from
training.

e To enable replication, reproduction, and further research on LLMs for code-related
tasks, we have made our dataset and code publicly available at https://github.com/
uw-pluverse/thalia-type.

4.2 LLM-Based Type Inference

Recent LLM-based approaches have recently achieved state-of-the-art performance on type

inference on the StatType-SO [5, 7, &] dataset. Existing approaches typically employ a
simple but effective prompt to guide LLMs in generating FQNs for types in the code snip-
pet [5, 7, 8]. Notably, Kabir et al. [7] extended the single-prompt approach by incorporating

a secondary prompt to address compilation errors in the code snippet generated by the
first prompt. This iterative process achieved a precision of 99.5% on the StatType-SO
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System | You are a helpful programming assistant.

User Add import statements to the following Java code.

Do not use wildcard imports. Include only the nec-

essary import statements. Do not import nonexis-

tent types. Please note that you need to pay close

attention and your response should be specific and **Cjava

accurate. Avoid repetition. Reply with the import import java.util.List;
statements only. S

{input_code} (b) Example response from

(a) Example prompt used to infer types on code snippets with LLMs wusing the example
LLMs. The {input_code} is replaced by the code snippet. prompt.

Figure 4.2: Example prompt used to infer types on code snippets with LLMs, along with
an example response. The placeholder {input_code} is substituted with the given code
snippet.

dataset. In contrast, our work focuses on the issue of data leakage in type inference rather
than repairing code snippets. Data leakage is a fundamental problem that compromises
the validity of results, regardless of whether a single-prompt or iterative approach is used.
To ensure consistency and comparability with prior research, we adopted a single-prompt
approach for type inference. Following established practices |5, 7|, we developed a straight-
forward but highly effective prompt for LLM-based type inference.

Prompt Template. Our prompt, shown in Figure 4.2, is designed to guide the
LLM in inferring the type information in Java code snippets. It includes two key com-
ponents: (1) a system message that sets the LLM’s role as a helpful assistant, and (2) a
user instruction explicitly requesting the addition of import statements for Java code. The
placeholder {input_code} is replaced with the actual code snippet during inference. Fig-
ure 4.2a presents the exact wording of the prompt, while Figure 4.2b demonstrates the
corresponding output generated by the LLM for an example code snippet. Despite its sim-
plicity, our prompt achieves high accuracy and aligns with best practices for LLM prompt
engineering [38]. Notably, our result using GPT-40 on the StatType-SO dataset represents
a 7% improvement over the prior results [7], demonstrating the robustness of our prompt
while maintaining a similar level of complexity.
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4.3 Datasets

We utilize two datasets StatType-SO and ThaliaType for evaluating LLMs’ type inference
performance on code snippets.

4.3.1 StatType-SO

The StatType-SO dataset is prevalent for testing type inference tools [2, 3, 4, 89] includ-
ing SnR in §3. It is constructed from real-world, manually repaired Java code snippets
from Stack Overflow. StatType-SO contains 267 code snippets from six popular Java
libraries (Android, GWT, Hibernate, JDK, JodaTime, XStream). The snippets were ex-
tracted from 50 randomly selected Stack Overflow posts for each library. To prepare the
dataset, all parsing errors in the code snippets were first corrected. Next, the missing
import statements were manually inferred and added to the code snippet, serving as the
ground truth for evaluation. Figure 4.3 shows an example from StatType-SO. The code
snippets from StatType-SO are generally short and make a small number of calls to the
libraries and assign the intermediate results to variables.

While StatType-SO is a widely adopted dataset for evaluating type inference techniques,
it is important to acknowledge the potential for data leakage. Given its long-standing
availability since 2017 at GitHub, StatType-SO may have been inadvertently incorporated
into the training data of some LLMSs, potentially leading to artificially inflated performance
scores.

4.3.2 ThaliaType: A New Dataset

In this thesis, we introduce ThaliaType, a new dataset specifically designed to rigorously
evaluate the type inference capabilities of LLMs while mitigating the potential biases intro-
duced by data leakage. ThaliaType is generated using Thalia, a tool originally developed
for testing compilers’ type checkers. Recognizing its potential for LLM evaluation, we
repurposed Thalia [90] to generate a diverse set of syntactically valid, well-typed, and type-
intensive Java programs. Given a set of types, along with the fields and methods defined
for each type, Thalia generates programs that utilize a subset of these components. Each
program consists of a single class with a main method containing variable declarations,
field accesses, and method calls.

Thalia’s ability to generate syntactically correct and well-typed programs, combined
with their type-intensive nature, aligns perfectly with the requirements for rigorous type
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package jodatime;

import org.joda.time.Chronology;

import org.joda.time.DateTime;

import org.joda.time.DateTimeZone;

import org.joda.time.chrono.GJChronology;

0 O Uik WK

//ID = 2182921

9 public class JodaTimeO5 {

10 public static void main(Stringl[] args) {

11 DateTimeZone zone = DateTimeZone.forID("Europe/London");
12 Chronology coptic = GJChronology.getInstance (zone);
13

14 DateTime dt = new DateTime (coptic);

15 DateTime minusOneDay = dt.minusDays (1);

16

17 System.out.println(minusOneDay ) ;

18 %

19 %

Figure 4.3: Example code snippet from StatType-SO using the JodaTime and JDK li-
braries. Excessive newlines have been removed for clarity of presentation. These code
snippets are generally short. The import statements serve as the ground truth and are
removed before the code snippet is used for evaluating type inference.

inference evaluation. Thalia ensures that the programs are both valid and well-typed,
eliminating the need for manual code cleanup or ground truth labeling. Furthermore, the
type-intensive nature of these programs presents a meaningful challenge for type inference,
while the inclusion of field accesses and method calls provides useful context for LLMs
during inference.

To create ThaliaType, we used Thalia to generate 300 code snippets, with the types,
fields, and methods drawn from the six libraries used in StatType-SO. The general process
is outlined in Algorithm 1. For each library, 50 code snippets are generated. By selecting
the same libraries, we ensured that the types in the generated code snippets were familiar
to the LLMs, eliminating performance differences based on varying familiarity with the
libraries. Each snippet is based on a single library, following the convention in StatType-

S0.

In Figure 4.4, an example of a code snippet generated by ThaliaType is shown. Each
code snippet consists of a Main class and a test method. In this code snippet, the code
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package src.toady;

import org.joda.time.chrono.ZonedChronology;
import org.joda.time.Chronology;

import org.joda.time.LocalTime;

import org.joda.time.DateMidnight;

0O Ui Wi

class Main {

9 static public final <K, I extends ZonedChronology, X> void test ()
10 throws Exception {

11 long elf = (long)-58;

12 Chronology pantsuits = new LocalTime(elf).getChronology();
13 DateMidnight fitness = DateMidnight.now(pantsuits);
14 int liner = fitness.getDayOfYear ();

15 }

16 2

17

18 interface FunctionO<R> {

19 public R applyO);

20 }

21

22 interface Functionl<Al, R> {

23 public R apply(Al al);

24}

25

26 interface Function2<A1l, A2, R> {

27 public R apply (Al al, A2 a2);

28 %

29

30 interface Function3<A1l, A2, A3, R> {

31 public R apply (Al al, A2 a2, A3 a3);
32}

Figure 4.4: Formatted code snippet generated by Thalia using the JodaTime and JDK

libraries. The variable names are randomly generated. The function interfaces were gen-
erated by Thalia but are unused in ThaliaType code snippets.
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Algorithm 1: Generate ThaliaType from libraries. Similar to StatType-SO, each
code snippet primarily uses a single API.

1 def generate(libraries):

Input: libraries. Set of jar libraries, i.e., Android, GWT, Hibernate, JDK, JodaTime, and
XStream.

Input: ExtractAPIs(library). Function that extracts public types, fields, and methods from
a library.

Input: Thalia(apis, libs, N): Function that generates N code snippets that uses the given
apis and compilable with libs.

Output: code snippets: List of generated code snippets.

code snippets.append (snippets)
return code_snippets

2 code_snippets + []

3 for library in libraries:

4 apis < ExtractAPIs (library) # Extract public classes, fields, and methods.
5 libs <~ {JDK, library, ...dependencies} # Libraries required for compilation.
6 snippets <— Thalia/(apis, libs, 50) # Generate 50 code snippets.
7

8

creates a new LocalTime from a given time represented by a long value of -58. The
chronology from this LocalTime, which in JodaTime is ISO0Chronology, is then used to
construct the current DateMidnight. Finally, getDayOfYear () method is called to retrieve
the ordinal day number of the year.

The code snippets in ThaliaType are similar to the code snippets from StatType-SO.
Figure 4.5 compares the statistics of the two benchmark suits. The code snippets in both
datasets are similar in terms of lines of code and the number of assignments. While Thalia-
generated programs are type-intensive, ThaliaType includes fewer method calls but utilizes
more types (via import statements) in each snippet.

Our experiments show that SnR achieved comparable performance on both ThaliaType
and StatType-SO (§4.5.2), demonstrating that ThaliaType provides sufficient semantic
information for the type inference task. To the best of our knowledge, ThaliaType is the
first dataset designed for evaluating LLMs on code snippet type inference while addressing
data leakage. Future research can leverage our replication package to generate additional

code snippets using Thalia using their desired libraries to evaluate newer state-of-the-art
LLMs.
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Figure 4.5: Box plots comparing the features found in StatType-SO and ThaliaType.

4.4 Data Sources for LLM Training

LLMs require vast amounts of data as input to train the models.

4.4.1 Proprietary Datasets: GPT and Llama

Both the GPT [21] and Llama [25] families of models are trained on large-scale, proprietary
datasets, with details about the training data being only partially disclosed.

OpenAl, the creator of GPT, has stated that the models are trained on a mixture of
publicly available data (such as internet text) and data licensed from third-party providers.
However, the exact composition of the dataset remains undisclosed due to the proprietary
nature of the model, and access to the model is limited to an APIL.

Similarly, while Llama models are open-weight and thus freely available for download
and use, the data used to train them is not publicly released. Meta discloses that Llama
is trained on publicly available data, primarily sourced from the internet, but the specifics
are not provided. This lack of transparency makes it difficult to assess the risk of data
leakage in both models.
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Algorithm 2: Finding StatType-SO code snippets in The Stack v2 based on file names.

1 def getRepos(dataset, filenames):

Input : dataset. The Stack v2 dataset which contain a list of files and their attributes.
Input : filenames. The list of file names for code snippets in the StatType-SO dataset.
Output: Repositories and authors that are potentially sources of StatType-SO code snippets
in the dataset are returned.
2 repo_counts < dict () # Initialize repository frequency dictionary.
3 author_counts < dict() # Initialize author frequency dictionary.
4 for data in dataset:
5 if basename (data.path()) in filenames: # Match the file in the dataset using the file
name.
6 if data.repo() not in repo_counts:
7 | repo_counts [data.repo )] = 0
8 repo_counts [data.repo ()| +=1 # Increment count for repo.
9 if data.author() not in author_ counts:
10 | author_counts [data.author O] = 0
11 author counts [data.author O] +=1 # Increment count for author.
12 return repo_counts, author counts

4.4.2 The Stack v2: StarCoder2

StarCoder2 [26] on the other hand is both open-weight and also trained on an open dataset
The Stack v2 that is available to download. The Stack v2 contains 67.5TB of data from
658 different languages. This means that the dataset used to train the model can be
examined to determine the extent of the data leakage. Since all our other models are
instruction-tuned, meaning they are trained to better follow user instructions, we also
used an instruction-tuned StarCoder2 to ensure consistency [27].

Examining The Stack v2. To examine the content of The Stack v2, the meta-
data of the files are examined. By matching the file name of the file names in the
stack using the process in Algorithm 2, repositories that contained StatType-SO code
snippets were extracted. From the file name matching process, there were 26 reposi-
tories and three users with five or more matching file names, which served as a start-
ing point for our manual investigation. The manual analysis showed that six repos-
itories were found to have contained StatType-SO code snippets. These six reposito-
ries are listed in Table 4.2 and contain all code snippets from the StatType-SO dataset.
mrthlinh/TypeResolution_0Oracle is only missing some of the code snippets that use the
Android library. pdhung3012/TypeResolution_Oracle contains the complete StatType-
SO benchmark-suite. All of the repositories found were committed in 2017, far before the
knowledge cutoff dates of all LLMs tested. This makes it likely for GPT and Llama to have
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Table 4.2: Repositories found in The Stack v2, the number of code snippets, and the last
commit date of the repository.

Repository # of code snippets Last Commit Date
miketran238,/AndroidOracle 50 2017-02-14
miketran238/JodatimeOracle 50 2017-02-12
mrthlinh/Oracle-GWT 50 2017-02-13
mrthlinh /Oracle-Hibernate 50 2017-02-13
mrthlinh /TypeResolution Oracle 219 2017-02-12
pdhung3012/TypeResolution Oracle 267 2017-06-30

been trained on some if not all the code snippets in the StatType-SO benchmark suite.

4.5 RQ1: How well do LLMs perform type inference on
unseen code snippets?

Given the strong possibility of data leakage, we sought to rigorously assess the true type
inference capabilities of LLMs. To do this, RQ1 investigates their performance on two
datasets, the original StatType-SO benchmark suite (which may have been seen during
training), and the unseen code snippets in ThaliaType. This comparison allows us to
isolate the impact of potential training overlap and better understand how well these
models generalize to genuinely novel code.

4.5.1 Method

Code snippets from StatType-SO and ThaliaType are given to LLMs using the prompt
pattern in Figure 4.2 and also our baseline SnR one at a time without import statements.
To check the output, import statements in LLMs’ response are extracted and compared
against the original import statements in the code snippets. To ensure reproducibility,
all the inferences are performed with a fixed seed (set to one) and a temperature of zero.
GPT-40-mini and GPT-40 are accessed using the OpenAl API [91], while StarCoder2:15b,
Llama3.1:8b and Llama3.1:70b are accessed through a self-hosted Ollama API [92] running
on an A100 GPU. The total cost of using the GPT models for all experiments conducted
in this chapter was $29.69, based on OpenAl’s pricing as of early 2025.
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The precision, recall, and F1-scores are computed the same as in the previous chapter to
evaluate the performance of type inference. Precision measures the proportion of correctly
inferred FQNs among all inferred FQNs, while recall measures the proportion of expected
FQNs that are correctly inferred.

Correctly Inferred FQNs Recall = Correctly Inferred FQNs F1 = 2 X Precision X Recall

Precision = == red FQNs All Expected FQNs Precision-+Recall

4.5.2 Results

Despite achieving strong results in StatType-SO (Figure 4.6), all evaluated LLMs demon-
strated lower performance on unseen code snippets in ThaliaType. StarCoder2:15b con-
sistently ranked between Llamad.1:8b and Llamad.1:70b across both benchmark suites.
Specifically, as shown in Figure 4.6a, StarCoder2:15b achieved an F1 score of 81.67% on
StatType-SO, higher than Llama3.1:8b, but lower than Llama3.1:70b, GPT-40, and GPT-
4o-mini. However, its performance dropped sharply to 27.08% on ThaliaType, represent-
ing a 66.8% decrease. Despite this decline, it still outperformed Llama3.1:8b but remained
below the other larger models. Notably, even the best performing model, GPT-4o0, ex-
perienced a 48.5% decrease in F1 score when evaluated on ThaliaType. The consistent
performance drop across all models, including StarCoder2:15b with confirmed data leak-
age, suggests that LLMs are highly likely affected by data leakage which potentially inflated
LLMs’ type inference performance on StatType-SO.

Unlike LLMs, SnR relies solely on the names of types, method names, and relation-
ships between types in code snippets. SnR only experienced a 9.8% decrease in F1 score
evaluating on ThaliaType, due to the difference in available information in the code snip-
pets. The fact that LLMs outperformed SnR on StatType-SO while performing poorly
on ThaliaType suggests that LLMs leverage additional information in StatType-SO to
perform type inference. These performance discrepancies motivated further investigations
into the specific factors contributing to LLMs’ type inference capabilities. In particular,
in RQ2 (§4.6), we investigate what types of information LLMs might leverage for type
inference, and whether their performance depends on matching exact syntax of the code
snippets seen during training.

Finding 1: LLM type inference performance declined dramatically when applied to
generated, unseen code snippets, potentially as a consequence of data leakage. In
these cases, LLMs performed substantially worse than the constraint-based method,
highlighting a promising area for future improvement in LLM-based type inference.
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-40, on the StatType-

StarCoder2:15b performed in between Llama3.1:8b and

SO and ThaliaType datasets.

All LLMs experienced a large drop in type inference

performance on ThaliaType compared to StatType-SO.

Llama3.1:70b for both datasets.

49



Table 4.3: Recall grouped by document frequency of FQNs on GitHub for types in
StatType-SO and ThaliaType. The best result for each frequency group is colored us-
ing []. The TP column lists the number of correctly inferred FQNs by each tool for each
frequency group.

Document Frequency  [0,1e2) [1e2,1e3) [1e3,1e4) [le4,1e5) >=1leb
Total FQNs 27 69 312 429 463

8 TP Recall TP Recall TP Recall TP Recall TP Recall

d

& SnR 27 100.00% 60 86.96% 297 95.19% 372 86.71% 433 93.52%

&  StarCoder2:15b 7 25.93% 36 52.17% 235 75.32% 372 86.71% 404 87.26%

%5 Llama3.1:8b 2 7.41% 28 40.58% 173 55.45% 322 75.06% 378 81.64%
Llama3.1:70b 7 25.93% 31 44.93% 228 73.08% 383 89.28% 439 94.82%
GPT-40-mini 4 14.81% 43 62.32% 272 87.18% 399 93.01% 451 97.41%
GPT-40 6 22.22% 53  76.81% 296 94.87% & 421 98.14% 459 99.14%
Total FQNs 994 597 439 324 331

g, TP Recall TP Recall TP Recall TP Recall TP Recall

>

E SnR 735 73.94% 533 89.28% 407 92.71% 300 92.59% 292 88.22%

s StarCoder2:15b 22 2.21% 58 9.72% 94 21.41% 120 37.04% 234 70.69%

ﬁ Llama3.1:8b 19 1.91% 42 7.04% 64 14.58% 138 42.59% 258 T77.95%
Llama3.1:70b 18 1.81% 80 13.40% 144 32.80% 182 56.17% 270 81.57%
GPT-40-mini 56 563% 161 26.97% 227 51.71% 269 83.02% 300 90.63%
GPT-40 103 10.36% 233  39.03% 256 58.31% 288 88.89% | 316 95.47%

Impact of Document Frequency on LLM Type Inference

To better understand why there is a large disparity between StatType-SO and ThaliaType,
we investigated how the document frequency of a type impacts the performance of LLMs.
Document frequency measures the number of source files that reference a specific type.
Since LLMs’ outputs are biased by the training data [93, 94], it is plausible that their
performance may vary depending on the prevalence of a type within an LLM’s training
data. Understanding this bias helps ensure that LLMs deliver similar performance across
all potential types used in the real world. To quantify a type’s document frequency, we
analyzed source files from the Boa [95, 96] GitHub dataset. Specifically, the document
frequency F(T) is calculated as follows for a type T.

1 ifT
F(T) = Z ire s (F is the set of all source files in the GitHub dataset.)

teF 0 otherwise.

Based on the document frequency, we categorized the FQNs in the StatType-SO and
ThaliaType datasets into distinct frequency ranges. For each group, we calculated the
recall to investigate how a type’s real-world frequency impacts LLM performance. This
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categorization and analysis provide insights into the extent to which LLMs are biased
toward more frequently encountered types.

Results. LLMs performed poorly on less frequently used FQNs and worse on the unseen
dataset ThaliaType than on StatType-SO, even for frequently used FQNs. To analyze
how performance varies across FQNs with differing levels of usage frequencies, we grouped
FQNs into frequency ranges by orders of magnitude (0-100, 100-1,000, 1,000-10,000, 10,000~
100,000, and over 100,000 GitHub files). For the least frequently used FQNs in ThaliaType,
GPT-40 only achieved a recall of 22.22% on StatType-SO and 10.36% on ThaliaType.
In contrast, SnR demonstrated consistent performance regardless of a type’s popularity,
achieving recalls of 100.00% and 73.94% on StatType-SO and ThaliaType respectively. On
ThaliaType, LLMs only outperformed SnR on the most frequently used FQNs, specifically
those appearing in over 100,000 GitHub source files. This disparity may arise from LLMs
preferring more frequent FQN for a given simple name regardless of the context in the
code snippet. For example, for a type with the simple name View, if android.view.View
is the most frequent type in the >=1e5 category and javax.swing.text.View belongs to
a less frequent category, then always recommending android.view.View will result in a
high recall in the >=1eb category but a lower recall in other categories.

Finding 2: LLM type inference performance diminishes when inferring less frequently
used FQNs, highlighting a key limitation in applying LLMs to real-world applications.
On unseen code snippets in ThaliaType, SnR outperformed all LLMs except for GPT-40
and GPT-40-mini, but only for the most frequently used FQNs. This shortcoming may
hinder LLMs’ effectiveness for developers seeking assistance with these less common
FQNs.

Interestingly, despite StarCoder2:15b being trained on code snippets from StatType-
SO, it achieved a maximum recall of only 87.26%. As in the previous analysis, its per-
formance generally fell between Llama3.1:8b and Llama3.1:70b on both StatType-SO and
ThaliaType. Although training data may inflate performance, StarCoder2:15b does not
reproduce code snippets verbatim, as models are designed to generalize beyond specific
examples. This generalization, while desirable, makes it difficult to definitively detect
instances of data leakage.
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4.6 RQ2: To what extent do LLMs understand the ex-
ecution semantics of code snippets?

The performance decline on unseen data observed in RQ1 highlights the need to investigate
how LLMs handle type inference. To explore whether this decline stems from a lack of
semantic understanding in LLMs, we conducted an experiment using semantic-preserving
transformations that alter syntax without changing the semantics. Our hypothesis is that
if LLMs possess a deep understanding of the code snippets’ semantics, their performance
should remain stable despite such transformations. Conversely, significant performance
degradation would suggest that LLMs rely heavily on superficial syntactic patterns rather
than a genuine semantic comprehension.

4.6.1 Method

The transformations, detailed in Algorithm 3, explore the extent to which syntactic changes
affect LLMs’ semantic understanding of code. Three specific transformations were em-
ployed to assess the impact of modifications to identifier names (line 35), code structures
(line 35), and Java keywords in comments (line 35). These were selected to highlight
potential limitations in LLMs’ semantic understanding, though future research could ex-
plore additional transformations. Their impact was then evaluated using the methodology
outlined in §4.5. The Wilcozon signed-rank test |97] was used to determine whether the
transformations caused significant changes in precision, recall, and F1 scores.

Background: Java Grammar

The Java grammar depicted in Figure 4.7 is used to illustrate the key transformations on
the Java code snippet. This grammar is expanded from the one introduced in Figure 2.1 to
include the rules for classes, modifiers, and statements. Each code snippet contains one or
more classes along with a set of import statements. Classes may contain fields, methods,
and blocks, with methods comprising blocks of statements and expressions. Highly repeti-
tive Java statements and expressions were omitted as they follow the same transformation
principles.
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Class

Modifier
ClassMember
Field

Method
Annotation
Block

Statement

Expr

Literal

Op

Name

FQN

Type
Primitive Type

{Modifier} class SimpleName [extends Name] [implements { Name}]
“{{ClassMember}}’
Annotation | public | protected | private | static | abstract | final
Field | Method | Block
Type SimpleName [= Ezpr] ;
{Modifier} Type SimpleName ({Type SimpleName}) Block
@ Name
“{>{Statement}‘}’
Expr ; | Exzpr=FExpr ; | Block | return [Expr]|;
| Type SimpleName [= Ezpr] ;
| if (Expr) Statement else Statement
| while (Ezpr) Statement
| for (Expr; Expr; Expr) Statement
| for ({Modifier} Type SimpleName [= Expr]; Expr ; Expr) Statement
Name | Literal | this | super | FEzpr Op Expr
| ( Type) Ezpr | Expr instanceof Name
| [Expr .] SimpleName | [Ezpr .] SimpleName ({Expr})
| new Name ({Ezpr}) | ' Expr | - Expr
| ({[Type] SimpleName}) -> Block | SimpleName -> Block
| ({[Type] SimpleName}) -> Expr | SimpleName -> Expr
null | NumberLiteral | StringLiteral | BooleanLiteral
Fl e = e | e
FQN | SimpleName
Name . SimpleName
PrimitiveType | Name | var | void

int | boolean | float

Figure 4.7: Simplified Java grammar to illustrate our transformations. {*} denotes that
the enclosed term occurs zero or more times. [*| denotes that the enclosed term occurs

7Zero or one time.
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Algorithm 3: Procedure for the three code transformations applied in RQ2.

1 def RenameIdentifier(p):
Input : p, representing the parsed code snippet.

Output: Transformed code snippet with renamed identifiers.

2 for variable declaration in FindVariableDeclaration(p): /4 Renaming all variables.
3 random _name < GetRandomName ()

4 ReplaceAllVariableName (p, random name, variable declaration.getName())

5 skip_list + {}

6 for expression _method in FindExpressionMethodCalls(p):

7 if expression method.hasExpression(): # Skipping method calls with expression.
8 | skip_list.add (expression_method.getName ())

9 for method declaration in FindMethodDeclaration(p): # Renaming all method names.
10 if method declaration.getName () in skip list or "@Qverride” in

method _declaration.getAnnotations():

11 ‘ continue # Skipping methods that potentially override parent methods.
12 random name ¢ GetRandomName ()

13 ReplaceAllMethodName (p, random name, method declaration)
14 RenameClassNames (p) # Renaming class names.
15 RenamePackageNames (p) # Renaming package names.
16 return p

17 def LowerCode(p):
Input : p, representing the parsed code snippet.

Output: Transformed code snippet with lowered expressions.

18 for expression in findExpressions(p): # Lowering expressions.

19 if IsExprStatement (expression.parent()) or IsLoopCondition (expression) or
IsLambdaExpression (expression):

20 ‘ continue # Skipping expression statements, loop conditions, or lambda expressions.

21 random _name < GetRandomName ()

22 InsertBefore("var { random name } = { expression } ", expression)

23 Replace(p, random name, expression)

24 for field in findFields(p): # Lowering field initializes.

25 if field.hasInitialization():

26 field name « field.getName ()

27 initializer < field.getInitializer()

28 field.removeInitializer ()

29 InsertBefore("{|n { field name } = { initializer } ; |n }”, field)

30 return p

31 def AddKeyword(snippet):
Input : snippet, representing the original code snippet.

Output: Code snippet with added keyword comments.

32 new_lines < []

33 for line in snippet.split("|n"): # Append a comment to every line.
34 | new_lines.add("{ line } //{ GetRandomKeyword() }")

35 return new _lines
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Identifier Renaming

This transformation investigates whether LLMs rely on specific identifier names for type in-
ference. Although identifier names can provide useful signals, if a model relies on particular
unique identifiers or specific identifier sequences seen during training, its generalizability
may be compromised. In practice, however, identifiers in real-world code snippets are often
lowercase variants of the type name or abbreviated forms, offering little additional semantic
information.

The RenamelIdentifier function in Algorithm 3 details the process, which system-
atically renames identifiers such as variables, methods, classes, and packages in the code
snippet. First, all variable declarations are identified using the FindVariableDeclaration
function (line 2), which extracts statements matching the pattern TypeSimpleName|=FEzpr
| 5. The algorithm then traverses each declaration, generating a unique, random three-word
name for each variable using the GetRandomName function (line 3), from a predefined word
list from prior work [90] to ensure uniqueness. The algorithm replaces every occurrence of
the variable name in the code (extracted using the getName function in line 4).

Next, the algorithm processes method declarations. To avoid renaming references
that could alter semantics, all the method call expressions (Fzprs with the form [Ezpr .|
SimpleName ({ Exzpr})) that have the first optional part ([Exzpr .]) is potentially external,
thus added to a skip_list (line 7-8) to be filtered out (line 10). Additionally, overridden
methods annotated with @0verride are skipped, as their names must match those in the
super class (line 10). Lastly, the algorithm renames classes and packages (lines 14-15),
following the same procedure used for variables. The details are omitted here for brevity.

Figure 4.8 provides an example of this transformation, showing how variables, methods,
classes, and packages are renamed. Method m which likely overrides the method m on type a
is preserved out of an abundance of caution to preserve semantic consistency. Furthermore,
it should be noted that different types of names are renamed separately. For example, the
method name n is renamed to a different name than the variable name n.

Code Lowering

The code lowering transformation examines the impact of structural changes on LLMs’
type inference. A key aspect of type inference involves understanding the types present in
a program and how they relate to one another. Code lowering does not alter these type
relationships but instead disrupts the exact sequence of tokens presented to the model. If
a model relies heavily on specific token sequences seen during training, its generalizability
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1 | package p;
2
3 | class C extends A {
4 A a;
5 void m() {
6 a.m();
7 } Before  After
8 int n() {
9 Amis m = ilg P GrouseScabsShelley
10 return 1; C TashaMonroviaTimbers
11 } a RowsGarlicky Thump
12 |3 n() ListerineStupefiesFetlock()
n CrackerSherbertsPlod
(a) Before renaming. (b) Renamed identifiers.
1 | package GrouseScabsShelley;
2
3 | class TashaMonroviaTimbers extends A {
4 A RowsGarlickyThump;
5 void m() {
6 RowsGarlickyThump.m();
7 }
8 int ListerineStupefiesFetlock () {
9 int CrackerSherbertsPlod = 1;
10 return 1;
11 ¥
12 |}

(c) After applying identifier renaming.

Figure 4.8: Example identifier renaming on a simplified code snippet.

may be impaired, leading to failure in inferring types when the same program is presented
in a different structure.

The algorithm first extracts and traverses all the expressions (line 18) in the code
snippet. For each expression, if its parent is not an expression statement (Statements
with the form Ezpr ;) and it is not a loop condition (lines 19-20), the algorithm creates a
new variable with a random name, assigns the expression to the variable, and inserts this
assignment statement before the expression (lines 21-22). Next, the original expression is
replaced with the newly created variable assigned with the value of the original expression
(line 23). Such transformations modify the code structure while preserving the semantics
of the code snippet. The expressions in expression statements must be skipped because
transforming them may result in invalid code. For example, an expression in an expression
statement can be a method call with no return value (i.e., with a void return type). In
such a case, the created assignment statement would be invalid. Conditions in loops cannot
be transformed either since such transformations could change the semantics of the code.
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1 [class C {
2 {
3 ¢ = null;
4 }
1 |class C { 5 C c;
2 C ¢ = null; 6 void m() {
3 void m() { 7 int a = 0;
4 int a = 0; 8 var GrouseScabsShelley = a == 0;
5 if (a == 0) { 9 if (GrouseScabsShelley) {
6 return; 10 return;
7 } 11 }
8 } 12 }
9 |} 13 |}
(a) Before code lowering. (b) After applying code lowering.

Figure 4.9: Example code lowering on a simplified code snippet.

In addition to expressions, code lowering also applies to fields with an initializer. For
each field in the code snippet (line 24), if it has an initializer (line 25), the algorithm splits
it into a declaration and a block initializing the field (lines 26-29).

Figure 4.9 demonstrates this transformation. In this example, the field C ¢ = null is
split into a declaration and an initializer block with ¢ = null. Additionally, the expression
in the if statement is replaced with a newly created variable, and an assignment statement
is inserted before the expression’s usage to assign its original value to the variable.

Adding Keyword Comments

The keyword comment transformation evaluates whether comments containing Java key-
words distract LLMs. If a model relies on specific sequences of keywords seen during
training, rather than on the actual content of the code, then this transformation may lead
to reduced performance and an inability to generalize to unseen code snippets. To per-
form this transformation, the AddKeyword function in Algorithm 3 appends a single Java
keyword [95] as a line comment at the end of each line in the code snippet. An example of
the transformed snippet is presented in Figure 4.10.

Putting Everything Together
Figure 4.11 illustrates the complete set of transformations used in RQ2. Each of the first

three transformations was applied independently to measure its individual impact. The
final transformation combines all three sequentially to more strongly perturb the input,
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1 |class C { 1 [class C { // continue
2 void m() { 2 void m() { // void
3 return; 3 return; // int
4 } 4 } // opens
5 |} 5 |} // case
(a) Before adding keyword comments. (b) After adding keyword comments.

Figure 4.10: Example of adding keyword comments on a simplified code snippet.

- —
Code
Snippet - All

Figure 4.11: Overview of the transformation workflow for RQ2. Three code transformations
were designed and applied individually to assess their isolated impact. A fourth transfor-
mation combines all three sequentially to evaluate potential non-linear interactions.

thereby making it more difficult for models to directly recall StatType-SO code snippets,
if they were seen during training.

4.6.2 Results

The effects of applying transformations to the StatType-SO and ThaliaType datasets are
shown in Tables 4.4a and 4.4b, respectively. These transformations significantly affected the
performance of all evaluated LLMs, causing significant perturbation in precision, recall, and
F1l-scores. However, the results are not straightforward and merit detailed examination.

Focusing on each transformation in isolation (identifier renaming, code lowering, com-
ment adding), the results show that LLMs generally exhibit resilience, meaning that simple
transformations often do not significantly change a model’s performance. This was par-
ticularly true for more advanced models such as GPT-40 but also held for smaller models
like StarCoder2:15b. Notably, StarCoder2:15b, which is known to have been trained on
StatType-SO code snippets, exhibited significant performance drops only under identi-
fier renaming (in recall) and comment adding (in recall and F1-score) when evaluated on
StatType-SO. The isolated transformation results on StatType-SO and ThaliaType indi-
cate a degree of generalizability in LLMs’ understanding of code.
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Table 4.4: The precision, recall, and Fl-scores of tools after transformations identifier
renaming (Id Renaming), code lowering, and adding keyword comments (comment adding)
were applied. Note that [] represents p < 0.05, [] represents p < 0.01, and [ represents
p < 0.001 when performance decreases, and [] represents p < 0.05, and [ represents
p < 0.001 when performance improves.

(a) The precision, recall, and Fl-scores of tools on StatType-SO and transformed code snippets.

SnR StarCoder2:15b Llama3.1:8b Llama3.1:70b GPT-40-mini GPT-40
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
StatType-SO 95.50% 91.46% 93.44%  82.28% 81.08% 81.67%  76.92% 69.46% 73.00% 86.08% 83.69% 84.87%  86.34% 89.92% 88.09%  95.66% 95.00% 95.33%

Id Renaming 95.50% 91.46% 93.44%  82.09% [IZ8Y 76.28% 60.68% 85.34% [GHBYABOMOY 89.63%88:46% 89.04%  97.03% 95.62% 96.32%
69.43% 65.15%

Code Lowering  95.43% 91.62% 93.49%  83.72% 79.92% 81.78% 83.81% 80.46% 82.10% 86.14% 88.92% 87.51%  94.82% 95.69% 95.25%
Comment Adding 95.50% 91.46% 93.44%  83.98% [BIO0RA79.24%  78.65% 67.46% 72.63%  85.39% 80.92% 83.10% 87.90% 89.38% 88.63%  96.06% 95.77% 95.92%

Al 05,487 01.62% 03.10% | 79,347 SOIBRASORONIS AV B OBV OBYABO% 1,607 BRSSVIBANRyASRR0v: > . SR

(b) The precision, recall, and Fl-scores of tools on ThaliaType and transformed code snippets.

SnR StarCoder2:15b Llama3.1:8b Llama3.1:70b GPT-40-mini GPT-40
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
ThaliaType 84.15% 84.43% 84.29%  43.46% 19.66% 27.08%  31.27% 19.40% 23.95% 61.58% 25.85% 36.41%  66.64% 37.73% 48.18%  54.74% 44.54% 49.12%
Id Renaming 84.15% 84.43% 84.29%  46.24% 30.20% 31.36% 19.11% 23.74%  57.08% 24.47% 34.25% 38.44% | BTONNABISET 5. 77% 44.80%
Code Lowering 84.14% 84.39% 84.27%  48.09% 27.06% 18.21% 21.77%  60.16% 25.25% 35.57% 36.01% 44.45%  43.45% 44.43% 43.93%
Comment Adding 84.15% 84.43% 84.29% 19.66% 25.00% 19.22% 21.73%  59.56% 25.07% 35.28%  64.27% 36.57% 46.62%  32.26% 44.80% 37.51%
All 84.14% 84.39% 84.27% | OIS 20.74% REBIA  27.57% 17.77% 21.61% | ES0V0RSSIA 31.41 % IEEE0% 36 .87 EBRZANI5E6:80% 45.29% 50.20%

Finding 3: LLMs, especially more advanced models, demonstrate generalizability to
simple transformations that preserve execution semantics, maintaining overall perfor-
mance despite syntactic changes such as identifier renaming, code lowering, and com-
ment adding. This shows that the models tested do not rely on any one syntactic
element for type inference.

However, when all three transformations were applied simultaneously, the changes in
performance for LLMs were amplified and clearly, significantly, negatively impacted all
LLMs’ precision, recall, and F1l-scores on StatType-SO. For example, Fl-scores dropped
by 1.7% on GPT-40, 16.8% on StarCoder2:15b, and 30.0% on Llama3.1:8b. Similar trends
were observed for precision and recall. In contrast, applying the same three transformations
on ThaliaType code snippets produced less consistent and generally smaller effects. In
some cases, performance even improved. For instance, StarCoder2:15b achieved a higher
F1-score despite a lowered precision, and GPT-40 demonstrated higher precision, with no
significant changes in other metrics on ThaliaType code snippets.

Focusing on GPT-40 on StatType-SO, despite identifier renaming and comment adding
causing insignificant performance increases, and code lowering causing a small but signifi-
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cant decrease in precision without impacting F1, when all combined, significantly decreased
performance in precision, recall, and F1l-scores. These effects were not observed for any
model using ThaliaType code snippets.

The discrepancies in performance indicate that the results in StatType-SO may be
influenced by data leakage and have limited generalizability compared to the results in
ThaliaType. A potential explanation is that transformations reduced the ability of LLMs
to recognize code patterns from StatType-SO snippets from training, leading to degraded
performance. In contrast, ThaliaType consists of newly generated code snippets that
were not in the training data. As a result, models must rely more on reasoning over
execution semantics rather than recall from training. The observation that performance
on ThaliaType does not consistently decline, and sometimes even improves, suggests that
current LLMs can withstand simple, execution-semantic preserving transformations, and
demonstrate greater generalizability than LLMs’ performance on StatType-SO.

In contrast, SnR, which analyzes the semantic meaning behind the code snippets, was
unaffected by these transformations, experiencing only minor, statistically insignificant
variations under the code lowering transformation. These variations occurred when multi-
ple types satisfied all constraints, with the order of type variables serving as a tie-breaker.

r

Finding 4: In contrast to SnR, which is designed to extract semantic meaning from
code snippets and remains unaffected by semantic-preserving transformations, LLMs’
type inference generalizability is negatively impacted by combined transformations
on StatType-SO, a pattern not observed in ThaliaType. This contrast suggests that
while LLMs are capable of generalizing in ThaliaType and its transformed variants,
their generalization ability diminishes in StatType-SO, potentially due in part to data
leakage.

4.7 Threats to Validity

There are four main threats to validity.

First, the representativeness of ThaliaType may not fully capture the diversity
and complexity of real-world Java code snippets. However, this limitation is mitigated by
the primary objective of our evaluation, which is to assess the type inference capabilities
of LLMs. Specifically, ThaliaType is designed to evaluate whether LLMs can infer correct
type information by reasoning about the execution semantics of the code snippets, rather
than merely recalling examples from training. We acknowledge that LLMs may leverage
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additional semantic cues present in StatType-SO but not found in ThaliaType for type
inference. To account for these potential differences, RQ2 applies transformations to both
datasets. Regardless, there were still significant performance decreases on StatType-SO
code snippets. Furthermore, the strong performance of SnR on both StatType-SO and
ThaliaType indicates that, (1) ThaliaType shares key features that are necessary for type
inference with StatType-SO, (2) it presents a meaningful challenge for type inference tech-
niques, and (3) it exposes areas where LLMs require further improvement.

Second, variations in the document frequency of FQNs between ThaliaType and
StatType-SO datasets could influence LLM type inference performance, since LLMs’ out-
puts are biased by the training data |93, 94]. LLM’s performance may vary depending on
the prevalence of a type within LLM’s training data. To address this, we analyzed the
performance of LLMs across different document frequency levels. Despite these efforts,
LLMs consistently exhibited lower performance on unseen code snippets from ThaliaType
compared to StatType-SO.

Third, our findings may not generalize to other LLMs. We mitigated this by
following best practices [50] and evaluated a diverse set of models, including both open-
weight (StarCoder2:15b, Llama3.1:8b, Llama3.1:70b) and state-of-the-art closed models (GPT-
40, GPT-40-mini) of varying sizes, providing a representative sample of current LLM ca-
pabilities.

Fourth, prompt engineering may enable LLM to achieve better performance for type
inference on code snippets. To mitigate this threat, we followed best practices to design
a simple but effective prompt [38], which achieved high performance on the StatType-SO
dataset. Regardless, data leakage remains a fundamental issue that can influence LLM
evaluations regardless of prompt quality. Our evaluation highlights how data leakage may
have impacted prior assessments of LLM type inference performance.

4.8 Related Work

In this section, we briefly discuss different techniques for type inference on code snip-
pets (particularly machine-learning-based approaches) and LLM data leakage in other
fields, including automated program repair, code generation, refactoring, and more.
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4.8.1 Type Inference for Code Snippets

Existing type inference approaches for code snippets mainly fall into two categories, constraint-
based approaches and machine-learning-based approaches.

Constraint-Based Approaches. The general idea of constraint-based approaches is
to first analyze the code snippet and derive a collection of constraints on the types that
need to be inferred. With the derived constraints, a set of APIs that satisfies all the
constraints can be obtained by performing a constraint-solving algorithm. Baker is the first
work that applied constraint-based type inference for code snippets [1]. SnR, proposed in
§3, outperformed Baker by improving the handling of parameterized types and leveraged
constraint solving for fast and efficient type inference. Thus, SnR is used as a baseline to
compare LLMs’ performance.

Machine-Learning-Based Approaches. Machine-learning-based approaches typi-
cally leverage a model trained with a large set of programs from open-sourced projects.
Phan et al. [2] proposed StatType, which learns the FQNs that often co-occur from a
large corpus. With such knowledge, StatType can derive the FQN for an API based on
the neighboring API names. A subsequent work conducted by Saifullah et al. [3] made
improvements by leveraging both local and global contexts. Huang et al. [5] leveraged
pre-trained CodeBert [99], a transformer-based masked language model to predict FQNs
in the code snippet. Compared to LLMs evaluated in this study, CodeBert is much smaller
with 125 million parameters, compared to even Llamad.1:8b’s 8 billion parameters. Kabir
et al. [7] extended the single-prompt approach by incorporating a secondary prompt to ad-
dress compilation errors in the code snippet generated by the first prompt. However, since
our work focuses on mitigating data leakage, which fundamentally undermines inference
reliability regardless of the prompting strategy used, we used a single prompt. Chen et al.
[3] proposed a hybrid approach that iteratively combines constraint-based techniques, such
as SnR, with machine learning methods to refine the results further. Nevertheless, because
machine learning models are used to refine outputs produced by SnR, this hybrid approach
remains susceptible to data leakage.

4.8.2 Type Inference for Dynamically Typed Languages

Some dynamically typed languages also support compile-time type checking by adding type
annotations. For example, in Python 3.5, a library named typing is introduced to support
type hints; TypeScript enhances JavaScript with a type system by allowing variables to
have a type annotation. Type inference for dynamically typed languages presents addi-
tional challenges as dynamically typed languages often contain variables with insufficient
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static type constraints, which static type inference cannot handle soundly. Many existing
studies resort to deep learning-based approaches to overcome this challenge. For example,
Hellendoorn et al. [72] propose DeepTyper, a deep learning model trained to provide type
suggestions based on contexts and relations. Malik et al. [73] propose NL2Type, a machine-
learning approach that utilizes natural language information to predict type annotations.
Pradel et al. [100] propose TypeWriter, which employs a deep learning-based approach to
predict types and then utilizes a search-based approach to validate the predicted types.
Peng et al. [101] propose HiTyper, a deep learning-based approach that combines static
type inference. It conducts static inference and DL-based prediction iteratively to construct
a type dependency graph, which records type dependency information among variables.
This thesis focuses on the performance of LLMs in type inference for Java code snippets,
leaving the investigation of type inference for dynamically typed languages to future work.

4.8.3 LLM Data Leakage

Data leakage is not limited to type inference but also affects other software engineering
tasks. Currently, LLMs have been integrated into a wide variety of software engineering
tools such as automated code repair |29, 30, 31, 32, 33, 34, 35, 36], code generation [37,

, 39, 40], code refactoring [11, 12|, and code completion [13, 44, 15| which can all be
potentially affected by data leakage either currently or in the future.

Xia et al. [31] discovered that 15% of the bug-fixing patches for automated program
repair generated by earlier LLMs (i.e., CodeT5, GPT-Neo, GPT-J, and GPT-NeoX) were
already present in the training data. Sainz et al. |10, | examined several academic
datasets and reported that most of them were either used as training data for ChatGPT
or likely exposed to it. A subsequent work done by Golchin and Surdeanu [103] proposes a
more advanced detection technique and detects the presence of test data of several datasets
in the training data of LLMs. Recently, Kong et al. [71] detected memorization in LLMs
using low-probability events such as exact code repair matches. However, for type inference
on code snippets, there is generally one ground truth of types that are expected. Thus,
exact matches do not precisely indicate data leakage. As LLM training datasets grow larger
and increasingly opaque, detecting instances of data leakage during evaluation becomes
progressively more challenging.

The data leakage problem remains an open challenge for evaluating LLMs. Some stud-
ies have been conducted in other fields [104, , , , 108, 109] regarding data leakage
and LLM evaluation. Mirzadeh et al. [106] showed that LLMs have significant limitations
when conducting genuine mathematical reasoning, which suggests that LLMs are conduct-
ing sophisticated pattern matching rather than true logical reasoning. A recent study by
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Cao et al. [107] demonstrated that the performance of LLMs is far behind undergradu-
ate students on the proposed project-level Java benchmark that exercises object-oriented
programming features.

Our evaluation on type inference rather than math questions or code generation also
showed a significant drop in performance with generated code snippets which suggests
that understanding the type system in code is challenging for LLMs. So far, there is no
conclusive evidence showing that LLMs are conducting true type inference on code snippets.
Small changes to the inputs can drastically alter model outputs [110, , |. While
some guidelines have been raised for software engineering research using LLMs [36, 50],
protecting against data leakage remains an open challenge. We hope our work will shed
further light on the data leakage issue in software engineering.

4.9 Chapter Conclusion

This chapter conducted a comprehensive assessment of LLMs’ type inference capabilities
on Java code snippets. Our comprehensive evaluation mitigated potential data leakage
issues and identified possible limitations of LLMs. First, we create a new dataset named
ThaliaType. By evaluating the performance of LLMs on ThaliaType and StatType-SO, we
found that all LLMs suffer similar degradations in performance on unseen code snippets,
consistent with the LLM with confirmed data leakage, resulting in up to 59% decrease in
precision and up to 72% decrease in recall. In addition, LLM type inference performance
diminishes when inferring less commonly used FQNs, potentially introducing bias and
presenting opportunities for future research to enhance performance. Second, we designed
and applied three semantic-preserving code transformations to code snippets in ThaliaType
and StatType-SO to investigate LLMs’ understanding of the execution semantics. Through
evaluating LLMs with these transformed code snippets, we find that while LLMs exhibit
consistent performance under simple transformations, the consistency is not maintained in
combined transformations on StatType-SO. The performance degradation observed using
combined transformations on StatType-SO suggests that the LLMs’ performance on that
dataset may not be representative of their actual performance, potentially due to data
leakage. Our findings suggest that future evaluations of LLMs should also incorporate
unseen datasets, such as ThaliaType and transformed variants, rather than relying solely
on StatType-SO, to better assess the generalization capabilities of LLMs in type inference
tasks. All of our code and our dataset are available at https://github.com/uw-pluverse/
thalia-type.
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Chapter 5

Scitix: Scalable Constraint-Based Type
Inference for Code Snippets with
Unknown Types

This chapter builds on the work presented in §3 and addresses the scalability challenge
that arises in code snippets with unknown types.

5.1 Introduction

Recall back from §3, SnR uses constraint solving to find in totality the set of solutions
that satisfy all the constraints extracted from the code snippet, if such a solution exists.
That is why, the more libraries that are included in its knowledge base, the more likely
that SnR will be able to infer arbitrary code snippets regardless of the types and libraries
that snippet might refer to. Practical, real-world deployment of a constraint-based type
inference technique needs to include thousands of jars in the knowledge base to effectively
support arbitrary code snippets in the wild [78].

While SnR is efficient when the size of the knowledge base is small (e.g., with 49 jars
from StatType-SO), its efficiency drastically decreases when the knowledge base expands.
This limitation stems from SnR improperly handling the unknown types, i.e., types in the
code snippet that no type in the knowledge base can fit in. When there are unknown types,
SnR cannot find a set of types that satisfies all the extracted constraints. In such a sce-
nario, SnR instead attempts to enumerate and validate large possible subsets of constraints
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1 public void to_reminder(View view) {

2 Intent intent = new Intent(this, Notification_morning.class);

3 AlarmManager manager = (AlarmManager) getSystemService(Activity.ALARM_SERVICE);
4 PendingIntent pendingIntent = Pendinglntent.getService(this, 0, intent, 0);
5

6 Calendar cal = Calendar.getInstance();

7 cal.set(Calendar .HOUR_OF_DAY, timepicker.getCurrentHour());

8 cal.set(Calendar .MINUTE, timepicker.getCurrentMinute());

9 cal.set(Calendar.SECOND, 0);

10 cal.set(Calendar .MILLISECOND, 0);

11 manager .setRepeating(AlarmManager .RTC_WAKEUP, cal.getTimeInMillis(),

12 24%60x60*%1000, pendingIntent);

13 3}

Figure 5.1: Formatted Stack Overflow code snippet #14241439 showing an event handler
method called by Android with the relevant but unused View object.

using a series of heuristics. As the knowledge base expands, the time required to check
whether a subset of constraints is satisfiable increases, which in turn lengthens the overall
inference time. For example, consider the code snippet in Figure 5.1, where types this,
Notification_morning, and timepicker are immediately identifiable as unknown. In this
case, SnR takes 49 minutes to enumerate possible solutions using a large knowledge base
of over 3,000 jars, which is far too impractical for real-world use.

Our Approach. To make constraint-based type inference scalable and precise in prac-
tice in the presence of large knowledge bases and unknown types, we propose Scitix, a new
constraint-based type inference technique, which is based on the following two key, novel
components:

1. Inspired by ideas from gradual typing [112]|, we propose a special Any type to represent
the unknown types within code snippets as a means to escape the strict constraint-based
type inference. The Any type is a special type that can be implicitly converted to any
other type, and all other types can also be implicitly converted to Any. Our technique
marks types explicitly referenced in a code snippet, but unknown to the knowledge base,
as Any.

2. We devise an iterative approach to add constraints to improve the initial solution with
Any types to increase the precision of Scitix while improving scalability by skipping
constraints with unknown types that cannot be satisfied.

When given a code snippet, Scitix automatically recommends dependencies and FQNs for
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the types used. Despite being more flexible, Scitix remains highly precise and explain-
able in its inference process, especially when compared to prior machine learning-based
approaches [2, 3, 5, (].

We extensively evaluated Scitix against state-of-the-art tools using manually repaired
Stack Overflow code snippets (StatType-SO), a ubiquitous benchmark suite used to eval-
uate prior work [1, 2, 3, 5, 6, 7, 8]. Our evaluation compares Scitix against SnR, a state-
of-the-art constraint-based type inference tool, as well as state-of-the-art LLMs that have
shown promise in type inference from prior work |7, 8, 5|. However, due to concerns with
data leakage, where LLMs likely have been exposed to StatType-SO code snippets during
training, we leveraged ThaliaType proposed in §4 for evaluation. Across both StatType-
SO and ThaliaType, Scitix outperformed all state-of-the-art tools, including LLMs. Using
the largest knowledge base, which comprised over 3000 jars, led SnR to timeout on most
code snippets, yielding an F1l-score that is close to zero. In contrast, Scitix exhibited con-
sistently high performance, achieving an F1-score of 96.6% on StatType-SO and 88.7% on
ThaliaType. Even on the smallest knowledge base, compared to SnR, Scitix reduced the
number of errors in the recall by 79% and 37% for StatType-SO and ThaliaType, respec-
tively. Against LLMs, Scitix outperformed all models on StatType-SO using the largest
knowledge base, despite the potential for data leakage, and markedly outperformed them
on ThaliaType. In particular, Scitix reduced the number of errors in the recall by 20% on
StatType-SO and 78% on ThaliaType compared to GPT-4o.

Contribution. We make the following major contributions.

e We propose Scitix, a novel, scalable approach that efficiently and effectively handles
unknown types in constraint-based type inference on code snippets using the Any type
and an iterative approach.

e We evaluate Scitix against real-world code snippets from StatType-SO and the data leak-
age resistant ThaliaType dataset. Compared to the state-of-the-art SnR, Scitix reduces
the errors in recall by 79% on StatType-SO and 37% on ThaliaType.

e We demonstrate that Scitix outperforms state-of-the-art LLMs, reducing the error rate
by 20% on StatType-SO and 78% on ThaliaType.

e For reproducibility and replicability, we have provided a replication package at https:
//figshare.com/s/£03c5103e2ab02125b83.
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5.2 Motivating Example

In this section, we illustrate how SnR would infer the types in the code snippet, the
limitations of SnR (§5.2.1), and a sketch of the solution (§5.2.2). We use Figure 5.1 as our
motivating example. To reuse this code snippet, developers must:

(a) Identify the FQNs of the six simple names referring to types from popular libraries.
(b) Add the declaration and initialization for the variable timepicker.
(c) Recreate the Notification_morning class, written by the code snippet author.

This thesis and prior work [I, 2, 3, 4, 89, (] focus on step (a) which can assist the devel-
opers in reusing this code snippet. However, all prior work has overlooked the additional
challenges posed by unknown types, such as timepicker and Notification_morning, which
complicate step (a).

To recap a little bit, SnR infers the types in Figure 5.1 following a three-step process.
First, it extracts the constraints from the code snippet through static analysis. Second,
it queries a knowledge base using these constraints. Third, it solves the constraints with
the information found in the knowledge base using constraint solving. To illustrate this
process, we examine the following two statements from Figure 5.1.

Calendar cal = Calendar.getInstance();
cal.getTimeInMillis ();

Extract Constraints. 'To create constraints, types used in the code snippet are repre-
sented with type variables (TVs), which are then solved to find the types that satisfy the
constraints for each TV. The previous expressions would then be labeled as follows.

7y cal = 7y.getInstance();
Ty.getTimeInMillis () ;

One can consider constraint solving as the process of finding types from the knowledge
base to replace the type variables that satisfy all the constraints.

From the two statements for Calendar, the following constraints state that 7; has a
simple name Calendar and methods getInstance, getTimeInMillis. The wildcard symbol
"_" indicates that the FQN of Calendar is unknown. The method_id variables are used to
match identifier numbers that uniquely distinguish methods in the knowledge base.
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Table 5.1: Query result for FQNs using the simple names in Figure 5.1 using the largest
knowledge base with over 3000 most popular jars. The correct FQNs are shown in bold. ()
indicates there is no type in the knowledge base with the given simple name. Portions of

the longer FQNs have been replaced by ... to ease presentation.
Simple Name FQN Simple Name FQN
AlarmManager android.app.AlarmManager Activity com.ibm.sbt.services...Activity
PendingIntent android.app.PendingIntent eu.agrosense.api.task.Activity
View android.view.View android.app.Activity
javax.swing.text.View Calendar java.util.Calendar
org.hsqldb.View org.quartz.core.Calendar
org.springframework. . .View org.elasticsearch...Calendar
... 51 more rows omitted ... 3 more rows omitted
Intent com.lambdaworks.redis...Intent timepicker 0
android.content.Intent Notification_morning (Z)
— class(ry, _, "Calendar")

— method(method_id;, 71, T2, "getInstance")
— method (method_ids, 71, 73, "getTimeInMillis")

Search for Related Types in the Knowledge Base. To find the FQNs for the TVs
in the code snippet, SnR would query the knowledge base with the information from the
extracted constraints to find related types that the TVs might represent. For 77, SnR would
query for a type with a simple name Calendar. Table 5.1 shows results from querying the
knowledge base using the simple names in Figure 5.1 (note that names in Java are case-
sensitive). These queries generally result in one of the following scenarios.

(D Returning no FQNs. In this case, it can be reasonable to conclude that the searched
for type is unknown (e.g. timepicker, Notification_morning).

@ Returning one or more FQNs. In this case, type inference is needed to determine
which, if any of the returned FQN is correct.

For Calendar, the query resulted in scenario @ with a number of different Calendar types
from multiple libraries. SnR leverages constraint solving to narrow down the set of FQNs
found in the knowledge base.

Solve Constraints. Below is a simplified list of facts used for solving constraints. To
improve clarity, other relevant classes and their respective methods have been omitted.
These facts specify that the Java Standard Library (jdk) contains a class with the FQN
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java.util.Calendar, which has the simple name Calendar. This class has the methods
getInstance and getTimeInMillis, which return Calendar and long types, respectively.
Additionally, the sundial library contains a class with the FQN org.quartz.core.Calendar,
which has the simple name Calendar, but without relevant methods.

— class("jdk:java.util.Calendar", "java.util.Calendar", "Calendar")

— method(0, "jdk:java.util.Calendar", "jdk:java.util.Calendar", "getInstance")

— method(0, "jdk:java.util.Calendar", "jdk:long", "getTimeInMillis")

— class("sundial:org.quartz.core.Calendar", "org.quartz.core.Calendar", "Calendar")

These facts and the earlier constraints are then processed by a constraint solver to compute
a mapping from each TV to a type in the knowledge base. Since the Calendar type from
sundial lacks the getInstance and getTimeInMillis methods, the constraints precisely
determine that the only compatible type for 7 is 71 — "jdk:java.util.Calendar". Using
this mapping, SnR can correctly add import java.util.Calendar.

However, the presence of unknown types makes the entire set of constraints unsatis-
fiable. While the type under scenario (D can be reasonably considered unknown, finding
exactly which type is unknown under scenario ) is impossible without the ground truth.
The way SnR addresses the issue is to guess which type is unknown based on a series of
heuristics. However, when the guess is wrong, the precision and recall of the results de-
crease. Moreover, when the knowledge base size increases, more simple names match to
one or multiple FQNs (i.e., fall in scenario ), and it becomes more difficult for SnR to
guess the unknown type correctly, thus further losing precision and recall.

5.2.1 Limitations of SnR

SnR models type inference as a Constraint Satisfaction Problem (CSP) [113]|. Given a set
of FQNs and a set of constraints, a CSP solver finds a set of FQNs that satisfy all the
constraints in a code snippet, or determines that the constraints are unsatisfiable when no
solution exists. However, CSP is unable to handle unknown types, which leads to reduced
precision in inference. We illustrate this issue using line 2 in Figure 5.1, reproduced below.

new Intent(this, Notification_morning.class);

To try and solve for the types in the code snippet using constraint-based type inference,
again we annotate the code snippet with the TVs representing the used types.
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new 7 (1, T3);

Then, SnR extracts a set of constraints where 71, 75, and 73 correspond to the simple names
Intent, Main, and Class, respectively. This assumes the code snippet is wrapped inside
a class named Main to ensure it is parsable. In addition, a method constraint shows that
the constructor of Intent (represented as <init>) takes two parameters, 75, and 74, which
must be supertypes of 7 and 73.

— class(my, _, "Intent") — method_param(method_id;, 0, 7s)
— class(my, _, "Main") — method_param(method_id;, 1, 7g)
— class(73, "java.lang.Class", "Class") — supertype(7s, T»)
— class(7rg, "void", "void") — supertype(7s, 73)

— method(method_idy, 7y, 7z, "<init>")

To solve these constraints, facts are again retrieved from the knowledge base. However,
even with an oracle providing the correct type for Intent, the set of constraints above
remains unsatisfiable. Here are the relevant facts for Intent.

— class("android:android.content.Intent", — method_param(0, O,
"android.content.Intent", "Intent") "android:android.content.Context")

— class("jdk:java.lang.Class", — method_param(0, 1,
"java.lang.Class", "Class") "jdk: java.lang.Class")

— class("jdk:void", "void", "void") — supertype("jdk:java.lang.Class",

— method(0, "android:android.content.Intent",jdk:java.lang.Class")
"jdk:void", "<init>")

From the facts, we cannot find valid types for all T'Vs.

71 — "android:android.content.Intent" T — "jdk:void"
To — 77 75 — "android:android.content.Context"
73 — "jdk:java.lang.Class" 76 — "jdk:java.lang.Class"

Specifically, no valid type can be found for 75 because there is no correct Main type in
the knowledge base. Thus, a CSP solver would return unsatisfiable for the set of constraints
from Figure 5.1. So then, how can we determine that the type Intent in the code snippet
comes from the Android library? After all, the simple name Intent can also be from Redis
as seen from Table 5.1 as com.lambdaworks.redis. ..Intent. Types from both Android and
Redis libraries do not satisfy the constraints, and thus, it is infeasible for CSP solvers to
determine which one is more suitable. Besides, it is also possible that Intent is a user-
defined type that does not exist in the knowledge base.
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5.2.2 A Glance at Scitix

Although the constraints extracted from Figure 5.1 are unsatisfiable as a whole, we observe
that the majority of individual constraints still provide value when inferring the types in the
code snippet. Since we, acting as human experts, know that the correct solution involves
ignoring Main, we strike through and disregard its related constraints. This allows us to
focus on constraints for the class, method, and remaining method parameter of Intent.

— class(my, _, "Intent") — method_param(method_id;, 0, 75)
- "Maipt — method_param(method_id;, 1, 7g)

b -

— class(73, "java.lang.Class", "Class") - supertypetfss——
— class(7g, "void", "void") — supertype(rs, T3)
— method(method_idy, 7y, 7z, "<init>")

We can see that now the remaining constraints are satisfiable with the original facts
above in §5.2.1. Furthermore, as com.lambdaworks.redis...Intent does not accept jdk:
java.lang.Class as a second argument, it cannot satisfy the above constraints. Thus, we
can precisely determine using the constraints that Intent is from Android but not Redis.

To accomplish our goal and ignore Main, Scitix assigns the Any type to TVs with class
and method constraints where the TVs do not have a matching type in the knowledge
base. Scitix generates the corresponding fact for this type, class("any", "any", "Main")
which satisfies the constraint class(m,, _, "Main"). However, the Any type generated by
Scitix does not yet satisfy the constraint supertype(rs, 72). While one could potentially
generate facts for every type 75 can potentially represent, this is impractical. The TV 75
may potentially match a large number of types from the knowledge base because different
types may have the same simple name or different types may contain methods with the
same name, especially as the knowledge base becomes larger. To maintain scalability, Scitix
simply deletes all supertype constraints and refines the solution by adding back supertype
constraints iteratively. As long as adding the super type constraint does not lead to the set
of constraints becoming unsatisfiable, the constraint is then kept for future iterations. That
way, the constraint supertype(7s, 73) is preserved and strongly constrains that the second
argument in Intent’s constructor is a Class type. Now, Scitix can precisely determine,
using constraint-based type inference, that Intent comes from Android and not Redis.
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Figure 5.2: The workflow of Scitix.

5.3 Methodology

Figure 5.2 illustrates the general workflow of Scitix, which infers a set of FQNs from a given
code snippet. The inferred FQNs can be used to add import statements to the code snippet
to make it compilable. In step D, constraints are extracted from the code snippet (§5.3.1).
In step @), relevant facts are retrieved from the knowledge base (§5.3.2). During step ),
Scitix assigns Any type to the types in the code snippet that can be identified as unknown
types, and adds the required facts after the assignment (§5.3.3). To efficiently handle
unknown types that cannot be identified, instead of performing constraint solving with
all the constraints at the beginning, Scitix starts with a satisfiable subset of constraints,
and expands this set by iteratively adding constraints that preserve satisfiability (step @,
§5.3.4). This iterative process continues until either all constraints have been evaluated
or a timeout is reached. Finally, sets of FQNs that satisfy the constraints are returned.
One such set is selected (step ), §5.3.6) and used to add missing import statements and
libraries to the code snippet.

5.3.1 Extracting Constraints

Table 5.2 shows the constraints used by Scitix which are simplified from the original con-
straints in §3. To extract the initial constraints from the AST, Scitix employs SnR, which
performs static analysis based on the simplified rules outlined in Table 5.3. The paramtype
constraints are refined by SnR using the process described in §3.3.4, thus allowing Scitix
to handle parameterized types as well.
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Table 5.2: Descriptions of constraints on type variables used by Scitix.

Name Arguments Description
class (7, FQN, simple name) 7 has the given FQN and simple name.
supertype (71, 72) 71 is the super type of 7.

method (id, 7, Treturn, method name) 7 has a method with the given method name which
returns Tyeturn and is identified by id.
method param (id, arg_number, ) method with id takes in a parameter at index
arg_number with type 7.

5.3.2 Retrieving Facts From the Knowledge Base

Next, all the known facts for FQNs that the types in the code snippet might represent are
extracted from the knowledge base and given to Scitix. The knowledge base is built in the
same manner as SnR detailed in §3.3.1. Table 5.4 provides a brief summary of the various
kinds of facts stored in the knowledge base.

5.3.3 Assigning the Any Type and Adding Facts

As mentioned in §5.2, there may be no type in the knowledge base that corresponds to
the type represented in the code snippet. (i.e., no type in the knowledge base satisfies
the class, method, and method_param constraints extracted for the type variable identified
in the snippet). Such a type variable can be directly identified as an unknown type. To
handle these identified unknown types, Scitix assigns the Any type to each of them. After
the assignment, new facts that make the Any type satisfy the originally unsatisfiable class,
method, and method_param constraints need to be generated and added to the original set
of facts gathered by SnR. Table 5.5 shows an example of the generated facts after an Any
type assignment. As shown in the table, the original constraints require 7 to have a certain
simple name and a certain method with certain arguments and a return type. To make
the Any type satisfy these constraints, facts that state the Any type has the same simple
name and the same method are generated. To allow the Any type and the return type of
the method to be resolved independently, Scitix also augments the method constraint to
decouple these two types. The augmented method constraint is also shown in Table 5.5.

Compared to supertype constraints, class, method, and method_param constraints can
be directly queried from the knowledge base. Therefore, they can be solved more efficiently.
When no solution can be found in the knowledge base, it indicates that a type is unknown.
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Table 5.3: Simplified key statements and expressions used to extract constraints from code
snippets. Type name can either be a simple name or a qualified name which is denoted as
t in expressions. T denotes a vector of x where x can be an expression e, or a statement s.
71|7] represents the ith element in 77 where the vector index starts from 0 inclusive to the
size of 71, denoted by |7i| exclusive. e: 7 denotes the expression e is mapped to the type

variable 7.

Category Name Code Example Type Variables Generated Constraints
Class Declaration cls cext t; impl t3 cls C ext S impl T ciT b7t T supertype(71, T)
for i from 0 to |73|:
supertype(73]il, 7)
Type Name Simple Name sn View sn: T1 class(7y, , sn)
Qualified Name n . sn android.view.View n.sn: 71 class(71, n . sn, sn)
Statement  If if (e) {5} if (true) {} e: T class(71, "boolean", "boolean")
While while (e) {5} while (true) {} e T1 class(71, "boolean", "boolean")
Expression  Assignment e1 = e a =12 ej: 71, €a: T2 supertype(T1, T2)
Annotation Q¢ QOverride t: T class(ty, ,t)
Declaration ti View view t 71 class(t1, ,t)
Method e1 . m(€z) string.substring(1) e1: 71, €3: 73, e1.m(€3): 73  method(mid, 71, 73, m)
[create 7 for 75 in 73] = 74 for i from 0 to |73|:

New Instance  new ¢(€)

new String()

t: 71, € 72, new t(&): 11

method param(mid,i,74[z])
supertype(7i[i], 72[i])
method(mid, 71, 71, "<init>")

[create 7, for 75 in 73] = 72 for i from 0 to |73]:
method _param(mid,:,74[])
supertype(7ili, 73(1])
Array Access e1le2] a[1] e2: T1 class(71, "int", "int")

Leveraging this insight, Scitix efficiently detects some unknown types and assigns them
with the Any type which better models them during type inference.

5.3.4 Iteratively Adding Supertype Constraints

Although some unknown types can be identified and handled in the last step, there can still
be some unknown types remaining, rendering the entire set of constraints unsatisfiable. To
tackle this, Scitix utilizes an iterative constraint-solving approach to efficiently search for a
maximal set of satisfiable constraints. Specifically, Scitix adds supertype constraints one-
by-one to the previously satisfied class, method, and method_param constraints, and ensures
the satisfiability of the maintained set of constraints. As illustrated in Algorithm 4, the
algorithm proceeds greedily. During each iteration, a supertype constraint s is added to
the currently satisfiable set C'. If the resulting C' U {s} is satisfiable, s is retained, and
the process continues with the updated set C' = C' U {s}. Otherwise, s is discarded and
excluded from future iterations. The final satisfiable set of constraints is then used to query
for the mapping between the TVs and the types.
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Table 5.4: Description of the class, super type, method, and method parameter facts
including their respective attributes stored in a knowledge base. The parameterized type
information on types is omitted from the facts for clarity.

Fact Type Attributes Description
class (Type, FQN, sn) Type has the given FQN and simple name (sn).
supertype (Typei, Typea) Type; is super type of Types.

method (id, Type, Type,, name) Type has a method with the given name which returns
Type, and uniquely generated id.
method_param (id, arg_number, Type) method with id takes in a parameter at index
arg_number of the type, Type.

Table 5.5: Augmentations to the existing constraints along with additional generated facts
to assign TV to the Any type. The generated facts contain the constants found in the original
constraints. Any variables that remain in the generated facts (e.g. id in method and
method parameter constraints, FQN or potentially simple name) are replaced by generated
constants.

Name Constraint Arguments Augmented Constraint Arguments Generated Fact Arguments
class (7, FQN, simple name) - (Any, FQN, simple name)
method (id, T, Treturn, method name) (id, 7, _, method name) (id, Any, Any, method name)
method_param (id, arg_number, TV) - (id, arg_number, Any)

This approach contrasts with the method described in §5.3.3 where Any types facts were
added to handle unknown types. This is because adding Any type facts is not practical
for supertype constraints since Any is both super and subtype of all the types. Adding
facts for every type in the knowledge base slows down constraint solving and would not
be scalable as the number of types in the knowledge base grows. To maintain scalability
in the presence of unknown types, Scitix performs only a single iteration through the set
of supertype constraints. This is sufficient to discover a locally maximal set of satisfiable
constraints. A key insight is that if a set of constraints C' contains an unsatisfiable subset of
constraints Cj, then C' itself is also not satisfiable. Leveraging this property, the algorithm
incrementally builds up the constraint set from a known satisfiable subset. Although
this greedy strategy does not guarantee a globally maximal solution, it scales efficiently,
avoiding the exponential complexity of exhaustive global search, and reliably produces a
subset that is sufficient in practice. After running Algorithm 4, the unsatisfiable supertype
constraints that arise from unknown types and cannot be precisely identified in §5.3.3 are
now decoupled from the constraint-solving process.
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Algorithm 4: Iteratively adding supertype constraints.

Input : C, the set of gathered class, method, and method_param constraints.

Input : S, the set of gathered supertype constraints.

Input : F, the set of gathered facts.

Output: The extended set of constraints including the satisfiable supertype
constraints.

foreach s € S do

2 if satisfiable(C U {s}, F) then // Check satisfiability of the constraint set with

the new constraint

| C«+ CuU{s}

return C

=

W

5.3.5 Generating the Query

At this stage, the previously collected TVs and facts can be used to identify types that sat-
isfy the queried constraints. To accelerate this process, a couple of strategies are employed
to guide the solver and filter the input effectively.

Constraint Ordering. To guide the constraint solver, Souffié [20], constraints are or-
dered to determine which should be computed first for the final solution. While the order
of the constraints does not affect the result, significant speed differences can stem from the
bottom-up evaluation strategy used by Souffié. Recent work has explored automatically op-
timizing the ordering |1 11]. However, using the automatic optimizer would require profiling
the query for each code snippet, negating any time savings. Instead, a simple but effective
strategy is applied to order the constraints by their ease of evaluation, i.e., class, method,
method_param, and supertype. The class constraints are straightforward to evaluate, re-
quiring iterating through class facts and matching them to the simple or fully qualified
name given in the constraint. This can be quickly accomplished. Moreover, subsequent
constraints on the same TV only need to iterate through types with the given simple name,
significantly reducing the search space. The method constraint is similar to the class con-
straint, but since there are more method facts than class facts, method, and method_param
constraints were evaluated after the class constraints. Conversely, supertype constraints
are time-consuming as they generally require iterating through all of the supertype facts.
Therefore, supertype constraints were handled last.

Library Filtering. To prevent the size of the knowledge base from overwhelming
the solver, only a subset of relevant libraries is selected as input. We observe that code
snippets typically reference libraries using the simple names of the types used. Leveraging
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this observation, a subset of libraries is extracted from the knowledge base, containing only
those that define a type with a simple name appearing in the code snippet. All queries
to the knowledge base are then restricted to this subset, significantly reducing the search
space and improving Scitix’s scalability.

In contrast, SnR cannot filter libraries using only simple names. Code snippets com-
monly use variables without declaration and thus without simple names (e.g., timepicker
in Figure 5.1). Moreover, method calls can return types without explicitly mentioning a
simple name, even from other libraries (transient dependency). Since SnR cannot han-
dle unknown types and unsatisfiable constraints well, it considers all libraries using both
simple names and method names, at the cost of scalability.

5.3.6 FQN Selection

After queries to the constraint solver return a set of unique mappings between TVs and
types, a single best-suited mapping is selected using a simple heuristic. This heuristic
considers the types that require import statements. While prior work focused solely on
minimizing the number of libraries used, that heuristic is extended to identify the most
complete solution from our constraint optimization results and to address cases where
multiple solutions involve the same minimal number of libraries. The final mapping is
selected based on the following ordering criteria: 1. Fewest Any type, 2. Fewest number of
libraries, 3. Highest libraries score, and 4. Fewest number of prefixes.

Least Any Type. The solution with the least Any type that satisfies the constraints will
maximize the recovery of FQNs in the code snippet. While prior work considers the least
number of libraries first, this does not make sense for Scitix as not recommending any FQN
would technically use the fewest libraries. Thus, Scitix filters for the least Any types first.

Least Number of Libraries. Prior work has solely used the least number of libraries
effectively as the selection heuristic [1]. In recognition of this, the same approach was
adopted here.

Highest Libraries Score. The library score was used to differentiate between solutions
that have the same minimal, total number of libraries. This scenario arises when multi-
ple libraries implement multiple types with the same simple name, but no single library
implements all the required types. For example, if eight required types come from two
libraries, a solution that derives seven types from one library and only one from the other
is preferred over a solution that evenly splits the types across both libraries. While both
libraries may contribute necessary functionalities, the library containing a more complete
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set of required types is prioritized, with the second library included only for the specific
type it uniquely provides.

To calculate the library score for n libraries, the number of types that are in each library
is counted. The counts are placed in an ordered list of integers [ag, ai, ..., a,_1] where ag
represents the smallest number of types contributed by a single library, and subsequent
values correspond to increasing contributions. The library score is computed by multiplying
the number of types in each library with the index, Z?:_Oli x a;. Note that by this stage,
all mappings contain the same number of libraries and resolve the same number of types
according to the first two selection criteria.

Number of Prefixes. = When multiple libraries provide the required type, the number of
prefixes serves as a tiebreaker. For example, the FQN a.b.C has the prefixes a and a.b. The
total number of unique prefixes is calculated for all types within a mapping, and mappings
with fewer prefixes are preferred. This approach also helps distinguish cases where a library
repackages another, as the repackaging process typically introduces additional prefixes to
the original FQN.

Ezxample. In Figure 5.1, View, with only a class constraint, matched multiple types in
the knowledge base in Table 5.1. To determine which type to select, Scitix follows the list
of four criteria in order. Since View is not assigned to Any, the least Any type rule does
not apply. The least number of libraries rule narrows our selection to android.view.View
from the android library and javax.swing.text.View from the JDK as these libraries are
referenced by other T'Vs in the code snippet. Next, from the library score rule, Scitix can
precisely select android.view.View as the type for View, as there are four other TVs in the
code snippet with types from the android library, whereas only one TV in the code snippet
is from the JDK. By following the rules, Scitix can concretely determine the correct FQNs
for the types in the code snippet that match multiple types in the knowledge base.

5.4 Evaluations

Our evaluation was guided by the following research questions:

RQ1 How well does Scitix infer import statements as the knowledge base scales?
RQ2 How does Scitix’s runtime scale with increasing knowledge base size?

RQ3 What is the contribution of different Scitix components to its overall precision?
RQ4 How does Scitix compare with LLMs in inferring import statements?

RQ5 How well does Scitix perform in the presence of unknown types?
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Table 5.6: The number of code snippets that use a given language feature in the StatType-
SO and ThaliaType datasets.

Language Features StatType-SO ThaliaType ‘ Language Features StatType-SO ThaliaType
super 43 0 array 32 23
type cast 68 208 parameterized type 57 179
assignment 255 300 wildcard type 7 60

5.4.1 Experiment Setup

Scitiz. We implement Scitix in Java. In Scitix, MariaDB served as the knowledge base;

initial constraints were provided by SnR; and the constraints were solved by Soufflé Datalog

solver. A replication package is available at
https://figshare.com/s/£f03c5103e2ab02125b83

Baseline Approaches.  We evaluated Scitix against SnR along with state-of-the-art
LLMs including GPT-40 and GPT-4o-mini [21], as well as state-of-the-art open-weight
models such as Llama3.1:70b and Llama3.1:8b [25], all of which have shown strong perfor-
mance in type inference for code snippets |7, &, 5, |.

Dataset: StatType-SO. Using the same dataset as we did in §83 and 4, we utilized
StatType-SO |2|. StatType-SO consists of 267 manually repaired Stack Overflow code
snippets from 6 popular Java libraries, including 49 jars when considering the dependencies.

Knowledge Bases. The initial knowledge base, denoted as I'y, was constructed using
the 49 jars used in StatType-SO. To evaluate scalability, we progressively expanded the
knowledge base by incorporating additional jar files. Following the procedure from prior
work [78], we expanded the knowledge base by incorporating the top 500, 1,000, 1,500,
2,000, 2,500, and 3,000 most popular jars from the Maven repository. This resulted in the
expanded knowledge bases F500, FlOOO; P1500, ngoo, F2500, and Fgoog.

Dataset: ThaliaType. To ensure a fair evaluation and mitigate potential data leakage
concerns (i.e., LLMs were likely trained on code snippets from StatType-SO), we addition-
ally used ThaliaType |115] introduced in §4. The code snippets were generated using the
same six libraries as StatType-SO to ensure that the libraries evaluated were familiar to the
LLMs. As shown earlier in Figure 4.5, the code snippets from ThaliaType and StatType-
SO are comparable in length and number of import statements. Both StatType-SO and
ThaliaType exercise a diverse set of language features, such as parameterized types and
wildcard types (Table 5.6). While ThaliaType results in more type variables during type
inference, it results in slightly fewer method and method parameter constraints compared

80


https://figshare.com/s/f03c5103e2ab02125b83

StatType-SO I—D:I—|l ° StatType-SO I—D:l—| W00 ®
ThaliaType |—|:|:|—| e ThaliaType FD:'—P“
T T T T

T T
10 20 30 40 50 0 20 40 60 80 100

(a) Comparing the number of type variables. (b) Comparing the number of class constraints.

StatType-SO |—D:|—|C” L @ StatType-SO FD:'—' e o @
ThaliaType |'|:|:|—|0? ThaliaType D:'—'DG w

(¢) Comparing the number of method con- (d) Comparing the number of method param-
straints. eter constraints.

StatType-SO I—D:l—b @ e

T T T T T T
0 25 50 75 100 125

(e) Comparing the number of super type con-
straints.

Figure 5.3: Box plots comparing the number of type variables and constraints gathered in
StatType-SO and ThaliaType.

to StatType-SO (Figure 5.3).

Configurations. All experiments were conducted on a Linux system equipped with an
AMD 5600G CPU, limited to 16GB of RAM, and a five-minute timeout per code snippet.
This setup emulates a typical development environment, albeit with a slightly longer time-
out to better explore both tools’ practicality. The Llama3.1:8b and Llama3.1:70b models
were hosted and accessed via a web API backed by an RTX 6000 Ada GPU, while GPT-40
and GPT-40-mini were accessed through the OpenAl APIs.

FEvaluation Metrics. Scitix is evaluated using the same precision, recall, and F1-scores
from §8§3 and 4.
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Correctly Inferred FQNs Recall = Correctly Inferred FQNs F1 = 2 x Precision X Recall

Precision = All Inforred FQNs All Expected FQNs Precision+Recall

5.4.2 RQ1l: How well does Scitix infer import statements as the
knowledge base scales?

We evaluated Scitix’s performance on code snippets from the StatType-SO and ThaliaType
datasets without import statements. Across all knowledge base sizes, Scitix consistently
outperformed SnR, particularly as the knowledge base size increased, demonstrating su-
perior scalability. As shown in Figures 5.4 and 5.5, Scitix reduced the percent of er-
rors (correctly inferred ) 1, 7997 o Stat Type-SO and 37% on ThaliaType, relative to SnR, even

all expected

on the smallest knowledge base (I'y). Moreover, Scitix achieved F1-scores of 98.0% (StatType-
SO) and 91.1% (ThaliaType), compared to SnR’s 93.4% and 84.3% on the original T’y
knowledge base.
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As the knowledge base expanded, the gap between Scitix and SnR widened, with SnR
increasingly failing to complete within the five-minute timeout per code snippet. At the
largest knowledge base size (I'spo0), Scitix achieved Fl-scores of 96.6% (StatType-SO)
and 88.7% (ThaliaType), whereas SnR dropped to 2.1% and 0.0%, respectively. Scitix’s
inference performance remained consistent as the knowledge base size grew, demonstrating
the scalability of our approach.

Although SnR did not experience timeouts on the 'y knowledge base (shown in RQ2),
its inadequate handling of unknown types, such as user-defined classes and wildcard types,
led to a decrease in performance. Additionally, Scitix’s enhanced heuristics contributed to
higher precision and recall, even on I'y knowledge base. For this benchmark, all libraries
used by the code snippets in StatType-SO are included in the knowledge base. For real-
world use, we should strive to build as large of a knowledge base as possible to ensure high
recall for any code snippet.

Scitix performs worse on ThaliaType than on StatType-SO because there is less in-
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Figure 5.6: Graph of Scitix and SnR’s running time. The Y-axis shows the accumulated
percentage of finished code snippets for a given time on the X-axis.

formation, such as methods, to help narrow down the potential solutions (Figure 5.3).
Simultaneously, there are more type variables to solve for in ThaliaType. Consequently,
with fewer constraints for each type, there is often not enough information to decide be-
tween different FQNs. This affected both Scitix and SnR.

5.4.3 RQ2: How does Scitix’s runtime scale with increasing knowl-
edge base size?

To evaluate scalability, we analyzed how Scitix’s runtime scaled with increasing knowledge
base size and compared it to SnR. Figure 5.6 illustrates the time taken for Scitix and SnR
to complete type inference on StatType-SO and ThaliaType code snippets using 'y, I'sp,
I"10005 15005 20005 2500, and I'3ggq knowledge bases. The Y-axis represents the percentage
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Table 5.7: The precision, recall, and F1-scores completed by Scitix, SCitiX gpmpe; SCItIX gandom,
ScitiX fier, and Scitix ya,e using Lo, T'500, 1000, T'1500, ['20005 2500, and I'spe0 knowledge bases.
The best result in each column is shown in bold.

To

Ts00 T1000

Tis00

T2000

Ta500 I's000

P

Variant

R F1

P R F1 P R F1 P

R F1 P

R F1 P

R F1 P R F1

© Scitix
% Scitix smpe 97.3%
2+ SCitix Random 97-3%
£ Scitix fer  97.6%
2 Scitix nave 96.4%

97.2% 97.3%
98.2% 97.7%
98.2% 97.9%
94.8% 95.6%

96.6%
96.4%

95.8% 96.2% 96.7%
96.4% 96.4% 96.7%
97.0% 96.6% 96.8% 97.2% 96.3% 96.7% 97.1%
95.6% 88.3% 91.8% 94.6% 87.0% 90.6% 96.0%

95.3% 96.0%
96.1% 96.4%

96.5%
96.7%

95.1% 95.8% 96.5%
96.0% 96.3% 96.7%
95.2% 96.1% 97.1%
86.0% 90.7% 96.8%

95.1%
96.0%
94.5%
85.4%

95.8% 96.6%
96.3% 96.7%
95.8% 97.1%
90.8% 96.5%

97.9% 98.2% 98.0% 97.1% 96.6% 96.8% 97.3% 96.3% 96.8% 97.2% 96.5% 96.8% 97.2% 96.3% 96.7% 97.2% 96.3% 96.7% 97.1% 96.0% 96.6%

95.1%
95.9%

95.7%
96.1%
95.6%
90.6%

95.1% 95.8% 96.3%
96.3% 96.5% 96.3%
94.5% 95.7% 97.0% 94.2%
85.4% 90.6% 95.7% 86.0%

o Scitix 92.1%
£:SCitix simpe 91.5%
& Scitix gangom 91.2%
S SCitix Fier

90.2% 91.1%
88.9% 90.2%
90.0% 90.6%

90.3% 88.8% 89.5%89.8% 88.5% 89.2% 90.1%
89.8% 87.3% 88.6% 89.5% 87.1% 88.3% 89.6%
90.0% 88.7% 89.3% 89.4% 88.5% 88.9% 89.7%

92.2% 90.2% 91.2% 90.2% 88.8% 89.5% 89.8% 88.5% 89.1% 90.0%

88.3% 89.2% 90.0%
87.0% 88.3% 89.6%
88.3% 89.0% 89.6%
88.3% 89.1% 90.0%

88.2% 89.1% 89.5%
87.0% 88.3% 89.0%
88.3% 89.0% 89.2%
88.2% 89.1% 89.4%

88.0% 88.8%/89.5% 88.0% 88.7%
86.8% 87.9% [89.0% 86.8% 87.9%
88.1% 88.7% [89.0% 88.1% 88.6%
88.1% 88.7% 89.4% 88.0% 88.7%

B Scitix nave 89.4% 84.5% 86.8% 90.8% 76.4% 83.0% 89.2% 74.6% 81.2% 94.5% 72.5% 82.1% 94.3%70.7% 80.8% 96.3% 70.8% 81.6% 88.4% 70.4% 78.4%

Table 5.8: The average running time in seconds with Scitix, ScitiX gmpe, SCItIX gangoms SCitiX
fiers aNd SCitix y,. using L'y, I'sp0, I'i000s T'1500, ['2000, T'2500, and '3pp0 knowledge bases.

StatType-SO ThaliaType
Tool To Ts00 Tio00 Tisoo T2000 T2s00 T's000 To T'soo Tiooo Tisoo T2000 T'2s00  T's000
Scitix 10 14 13 15 15 17 17 11 11 14 16 17 17 17
Scitix simple 2 5 6 7 7 8 8 4 8 10 11 12 13 13
ScitiX rangom 18 23 25 28 25 28 27 21 17 20 21 20 21 23
Scitix Fier 9 15 16 19 20 20 21 11 13 15 16 18 18 18
Scitix naive 9 15 13 15 15 17 17 11 11 14 16 17 17 17

of code snippets that finished within the time shown in the X-axis.

Scitix demonstrated strong scalability. With I'399, Scitix completed all code snippets
within 243 seconds. Most code snippets using Scitix finished quickly. Half of the StatType-
SO code snippets finished within 6 seconds, with only eight snippets exceeding two minutes.
On Iy, Scitix took an average of 10 seconds (StatType-SO) and 11 seconds (ThaliaType).
Scitix scaled efficiently, with only a slight increase in runtime on '3y, taking an average
of 17 seconds for both StatType-SO and ThaliaType.

In contrast, while SnR performed well on I'y (average of 7 seconds and 9 seconds on
StatType-SO and ThaliaType, respectively), SnR failed to scale. On I's509, SNR averaged
289 seconds (StatType-SO) and 274 seconds (ThaliaType), failing to complete inference
for 93% of the StatType-SO code snippets within the five-minute timeout. Notably, Scitix
did not timeout on any code snippets in StatType-SO and ThaliaType.
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5.4.4 RQ3: What is the contribution of different Scitix compo-
nents to its overall precision?

We conducted an ablation study to assess the contribution of different components of Scitix
to its overall precision. By systematically disabling individual features while keeping all
other components fixed, we created four variants. Scitix g, omits super type constraints.
ScCitiX gumiom randomizes the order of constraints passed to the constraint solver. ScitiX gy
disables library filtering. Scitix ... simplifies the final FQN selection by choosing the
solution with the least number of any types. These four variants were evaluated on both
the StatType-SO and ThaliaType datasets, and the results are summarized in Table 5.7.

Our findings indicate that all components contribute to Scitix’s overall performance. Sc-
itix consistently achieved the highest F1-scores across all knowledge bases on both datasets,
with the sole exception of Scitix r., on I'g in the ThaliaType dataset, which was 0.1%
lower. While package filtering often does not affect inference performance in ThaliaType,
it did improve Scitix’s runtime (Table 5.8). Scitix g, without filtering was 19% slower on
StatType-SO and 6% slower on ThaliaType, taking an average of 21 and 18 seconds for
inference, respectively, compared to Scitix with package filtering.

5.4.5 RQ4: How does Scitix compare with LLMs in inferring im-
port statements?

Given the widespread use of LLMs, we compared against four state-of-the-art LLMs for
the task of type inference. However, LLMs are typically trained on vast datasets scraped
from the internet, which likely include code snippets from platforms like Stack Overflow.
Since StatType-SO is composed of real-world Stack Overflow code snippets and has been
publicly available on GitHub since 2018, there is a risk that LLMs may have been trained
on this data |1 15]. This raises concerns regarding data leakage, where the benchmark data
could overlap with the model’s training set. Thus as a result, LLMs’ performance on
StatType-SO is likely overstated, whereas performance on ThaliaType, which is composed
entirely of unseen code snippets, mitigates this risk.

To ensure a comprehensive and fair evaluation, we used both the StatType-SO and
ThaliaType dataset, and utilized a prompt from the previous chapter (Figure 4.2a). Each
code snippet was given to LLMs without import statements, and the inferred import state-
ments were collected. Following best practice [50|, we evaluated both state-of-the-art
closed-source models, GPT-40 and GPT-40-mini, and open-weight models, Llama3.1:8b
and Llamad.1:70b.
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Figure 5.7: Precision, recall, and F1-scores of Scitix, SnR on StatType-SO and ThaliaType
code snippets using the largest I'3o00 knowledge base compared to state of the art LLMs,
Llama3.1:8b, Llama3.1:70b, GPT-40-mini, and GPT-4o.

Scitix outperformed all LLMs on StatType-SO, despite the potential for data leak-
age, and greatly outperformed all models on ThaliaType (Figure 5.7). Scitix reduced
the percentage of errors by 20% on StatType-SO and 78% on ThaliaType compared to
the best-performing LLM (GPT-40). On unseen code snippets in ThaliaType, Scitix out-
performed GPT-40 by 80.7% in Fl-score. Scitix’s strong performance demonstrates that
careful analysis and satisfying constraints can surpass the statistical approaches used by
LLMs.
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Table 5.9: The precision, recall, and F1-scores by Scitix, and SnR using Iy, and I'g knowl-
edge bases. The best result in each column is bolded.

StatType-SO ThaliaType
Lo ' I I'r
Tool P R F1 P R F1 P R F1 P R F1

Scitix | 97.8% 98.2% 98.0% ' 94.1% 97.7% 95.9% 94.8% 87.0% 90.7% 93.5% 85.6% 89.4%
SnR [ 94.8% 91.9% 93.3% | 92.6% 78.9% 85.2% 93.9% 832% 83.2%  922% 68.1% 78.3%

5.4.6 RQ5: How well does Scitix perform in the presence of un-
known types?

Scitix is primarily designed for scalability (i.e., incorporating significantly more types into
the knowledge base), by accounting for unknown types. This design, in turn, enhances
its resilience to unknown types, leading to better performance than SnR when handling
code snippets that reference types not present in the knowledge base. To simulate such
conditions, a smaller I'r knowledge base was constructed. The I'r knowledge base was
built by selectively removing types from the original I'y knowledge base. Specifically, only
types that were not referenced by any other type were removed, while types that were
referred to by other types were retained. This approach was chosen because, in practice,
if a type is included in the knowledge base, its dependencies are typically included as well.
To avoid breaking these dependencies and to ensure the setup remained realistic, types
referenced by another type were retained in I'r. For example, if type 7y is a supertype of
Ty (i.e., 71 is referenced by 73), then 7 is retained in I'r. Type 73 is removed only if it is
not referenced by any other type in the knowledge base.

After removing all unreferenced types, the number of classes decreased from 33,150 in
[y to 20,732 in I'g. To evaluate Scitix and SnR on I'g, only FQNs that were still present
in I'g were considered. As a result, the number of expected import statements in the code
snippets decreased. In StatType-SO, the number dropped from 1,298 to 1,066, and in
ThaliaType, from 2,685 to 1,742.

Table 5.9 shows that Scitix was largely unaffected by the additional unknown types,
with only a 2.1% drop in Fl-score on StatType-SO and a 1.4% drop on ThaliaType. In
contrast, SnR experienced a larger decrease, with F1-scores dropping by 8.7% on StatType-
SO and 11.2% on ThaliaType when using the 'y knowledge base. These results suggest
that Scitix is more resilient to incomplete knowledge bases than SnR, making it better
suited for real-world scenarios where type information may be incomplete.
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5.5 Discussion

In this section, we discuss the limitations of Scitix (§5.5.1), and examine some potential
threats to validity in §5.5.2.

5.5.1 Limitation

Scitix uses SnR to generate constraints. However, SnR does not support certain language
features, such as wildcard types, which may lower type inference precision. Scitix mitigates
these gaps by assigning unknown types from unsupported language features as Any. Our
evaluation using StatType-SO and ThaliaType, which included these unsupported lan-
guage features, demonstrated that Scitix achieved high precision despite these limitations,
significantly outperforming SnR. Additionally, Scitix’s contributions are orthogonal to the
constraint extraction process; future advances in constraint generation will directly benefit
Scitix.

5.5.2 Threats to Validity

Internal. To mitigate potential threats to validity, we investigated cases where Scitix
underperformed to ensure our implementation was accurate. Evaluation subjects were
executed using external scripts to maintain consistent and reproducible settings. The
implementation, knowledge bases, and experiment setup are included in our replication
package https://figshare.com/s/f03c5103e2ab02125b83.

External.  One potential external threat to Scitix is its ability to generalize to other
programming languages. However, our approach is not specific to Java, as concepts such as
methods and inheritance are widely used in object-oriented programming languages. Scitix
can be easily adapted to support other languages by using a suitable constraint generator
and knowledge base.

5.6 Related Work

In this section, we introduce some related work in gradual typing, type inference for Java
code snippets.

Gradual Typing. Gradual typing [112] is a popular type system that allows types to
be unknown statically, similar to encountering unknown types in a code snippet. Notably,
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gradual typed languages, i.e., TypeScript [ 16], and Python with mypy [117], use Any type
to escape from type checking to allow for partially typed code. However, type checking
differs from type inference in key ways. Type checking takes the types and expressions
from a program to verify if the type rules are correctly followed. Scitix conducts type
inference using the type rules to compute the types on code snippets. We also applied
Scitix to Java, a language that does not employ gradual typing.

Type Inference on Java Code Snippets. Compared to the related works initially
discussed in §3.6 and §4.8, Scitix both achieves higher performance and requires less com-
putational resources than state-of-the-art ML-based techniques [0, 7, &]; especially when
considering the training and fine-tuning costs as well. The state-of-the-art ML-based tech-
nique [5] requires hardware (i.e., a RTX 3090) that many developers may lack. Similarly,
ZS4C [7], an LLM-based technique, requires data center scale compute for ChatGPT, yet
still does not outperform Scitix on the StatType-SO dataset. Additionally, as explored in
§4, LLM-based techniques are susceptible to data leakage, a common issue in engineering
research [115, 50, 31, 33, 106, , , |, potentially inflating LLM-based techniques’
performance Compared to ML-based techniques, Scitix is more explainable, with rules to
dictate the types to import. Furthermore, Scitix can further enhance the hybrid technique
proposed by Chen et al. [3], which integrates constraint-based type inference (i.e., SnR)
with ML-based techniques for type inference. Scitix can improve the initial type inference,
which helps refine ML predictions.

Reusing real-world Stack Overflow code snippets is challenging. Many studies have
worked on large-scale repair and reuse |53, 78, 118]. CSNIPPEX [53] introduced a pipeline
to convert Stack Overflow posts into compilable code units using a simple type inference
scheme. It resolved dependencies for over 237,000 posts with the top 3,000 jars. APIza-
tion |78] extended CSNIPPEX to create reusable APIs from Stack Overflow code. Zerouali
et al. [1 18] analyzed the versions of the libraries used in Stack Overflow Java code snippets
by matching class names and methods. Even after filtering out ambiguous types, they
identified 435 unique Jars across 1,760 code snippets. Scitix has the potential to improve
classes and methods identification, thus providing more semantic information for existing
Stack Overflow Java code snippets.

5.7 Chapter Conclusion

This chapter presented Scitix, a novel approach for precise, and scalable constraint-based
type inference on code snippets. Scitix is practical for real-world deployment since it
maintains high precision and recall with large knowledge bases and unknown types. Scitix
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marks explicitly referenced types in a code snippet that are unknown to the knowledge base
as a special Any type and iteratively adds constraints to enhance precision. We conducted
a comprehensive evaluation using real-world code snippets from StatType-SO along with
ThaliaType, a benchmark designed to mitigate data leakage concerns. Scitix reduced the
error rate by 79% on StatType-SO and 37% on ThaliaType using Iy, compared to SnR.
Scitix demonstrated great scalability, achieving Fl-scores of 96.6% on StatType-SO and
88.7% on ThaliaType with the largest knowledge base (I'3000), while SnR only reached
2.1% and 0.0%, respectively. Furthermore, Scitix outperformed LLMs, reducing the error
rate by 20% on StatType-SO and 78% on ThaliaType compared to GPT-40, even with
the largest knowledge base. This work represents the first practical constraint-based type
inference technique for real-world code snippets, offering improvements in both scalability
and performance.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the key findings of this thesis and discuss directions for
future research.

6.1 Conclusion

This thesis presents three studies aimed at improving code snippet reusability: the de-
velopment of SnR and Scitix for automatically inferring types in Java code snippets, and
the creation of the ThaliaType benchmark suite for evaluating LLMs on type inference.
By leveraging constraint-based type inference, SnR and Scitix enable precise, efficient, and
explainable type inference for code snippets. Notably, Scitix demonstrates strong type
inference performance while utilizing a large knowledge base, outperforming LLMs in both
precision and recall.

In §3, we demonstrated that constraints extracted from code snippets can effectively
guide a Datalog constraint solver for type inference. SnR precisely inferred missing types
and successfully recovered import statements in the StatType-SO benchmark suite, im-
proving both the compilability and consequently the reusability of these code snippets.

In §4, we evaluated LLMs’ capabilities for type inference. Given the public availability
of StatType-SO since 2017, there is a significant risk of data leakage into LLM training
data. We confirmed data leakage in the open-source model StarCoder2, and introduced
ThaliaType, along with transformations, to assess LLMs’ generalization capabilities on un-
seen code snippets. All evaluated LLMs showed performance degradation on ThaliaType,
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consistent with the degradation observed in StarCoder2. More concerning was the perfor-
mance decline seen when applying all transformations to StatType-SO code snippets. This
decline, not observed on ThaliaType, aligns with the expected effects of data leakage on
StatType-SO. Future evaluations of LLM-based type inference should account for the risk
of data leakage and employ benchmark suites like ThaliaType that contain unseen code.

In 85, we addressed the scalability challenge in type inference, particularly in the
presence of unknown types. By introducing the any type and iteratively adding con-
straints unrelated to unknown types, Scitix effectively handled real-world code snippets
from StatType-SO and ThaliaType while scaling to a large knowledge base with over
3,000 jar files. Moreover, Scitix outperformed LLMs on StatType-SO, despite possible
data leakage, and greatly outperformed LLMs on ThaliaType.

Collectively, this thesis contributes practical and effective solutions for enhancing code
snippet reusability. It highlights critical challenges in evaluating LLMs for type inference,
and proposes a precise, scalable constraint-based type inference technique to infer missing
types, and to recover import statements, facilitating the reuse of incomplete code snippets.

6.2 Future Work

Several avenues can further advance type inference for Java code snippets.

First, while constraint-based type inference leverages the semantics of the code itself,
it does not utilize auxiliary textual information such as code descriptions, accompanying
comments, or metadata from online sources. For example, when developers reuse code
snippets from platforms like Stack Overflow, the associated posts may reference libraries,
frameworks, or contextual hints that could inform type inference, even if exact library
versions remain unknown. Future work could explore parsing and integrating such textual
cues to resolve ambiguities that code constraints alone cannot disambiguate.

Second, although each individual Datalog query used by Scitix is fast, inefficiencies arise
when supertype constraints are added iteratively, as the Soufflé Datalog engine rechecks
the entire constraint set during each iteration, including those previously validated. Op-
timizations such as caching previous satisfiability checks could reduce this overhead and
further improve inference speed. While Scitix processes most code snippets within a few
seconds using the largest knowledge base, certain snippets with a large number of supertype
constraints take much longer due to the iterative process.

Third, advances in machine learning, such as LLMs, open promising avenues for type
inference. LLMs, trained on vast amounts of real-world code, can capture common type
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usage patterns in snippets. LLMs performed well on popular types in unseen ThaliaType
snippets. Combining the precision of constraint-based type inference with the learned
knowledge embedded in LLMs may yield improved type inference performance.

Beyond type inference, further work is needed to support developers during code snippet
reuse. This thesis primarily focused on recovering type information, but previous studies
have shown that many Stack Overflow code snippets contain parsing errors that cannot
be fixed by template-based repair, requiring manual intervention before type inference can
proceed |53, |. Future research could investigate robust parsing techniques capable of
automatically repairing or interpreting imperfect snippets, thereby reducing the manual
effort required from developers during code snippet reuse.
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